人工知能:Artificial Intelligence

python

モンテカルロ木探索の概要とアルゴリズム及び実装例について

モンテカルロ木探索の概要 モンテカルロ木探索(Monte Carlo Tree Search、MCTS)は、決定木探索の一種であり、ゲームの状態空間を探索し、最適な行動を見つけるための確率的手法となり、特にゲームや意思決定...
python

Negative Log-Likelihoodの概要とアルゴリズム及び実装例

Negative Log-Likelihoodの概要 Negative Log-Likelihood (NLL)は、統計学や機械学習においてモデルのパラメータを最適化するための損失関数の一つで、特に、確率分...
python

グラフニューラルネットワークを用いた分子シミュレーションの概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた分子シミュレーションの概要 グラフニューラルネットワークを用いた分子シミュレーションは、従来の手法に比べて高い精度や効率性を示すことが期待されたアプローチであり、特に、分子の...
アルゴリズム:Algorithms

Self-Refineの概要と関連アルゴリズム及び実装例

Self Refine "GPT-4以上? 自分で何度も“推敲”し完成度を上げる言語生成AI「Self-Refine」"では米カーネギーメロン大学、Allen Institute for Artificial Int...
python

Skipgramの概要とアルゴリズム及び実装例

Skipgramの概要 Skip-gramは、単語の意味をベクトル表現として捉え、類似性や意味の関連性を数値化することが可能な自然言語処理(NLP)の分野で広く使われる単語の分散表現(Word Embedding...
アルゴリズム:Algorithms

アルファベータ剪定の概要とアルゴリズム及び実装例について

アルファベータ剪定の概要 アルファベータ剪定(Alpha-beta pruning)は、人工知能やコンピュータ・ゲームの分野で使用される探索アルゴリズムの一種であり、特に、"ミニマックス法の概要とアルゴリズム及び実装例"で...
python

Ontology Based Data Access(ODBA)と生成系AIとGNN

Ontology Based Data Access(ODBA)について Ontology Based Data Access (OBDA)は、異なる形式や場所に保存されているデータに対して、オントロジーが提供する...
python

Generalized Advantage Estimation (GAE)の概要とアルゴリズム及び実装例

Generalized Advantage Estimation (GAE)の概要 Generalized Advantage Estimation (GAE)は、強化学習におけるポリシーの最適化に使われる手法の一...
python

グラフニューラルネットワークを用いた天気予報の概要と関連アルゴリズム及び実装例

グラフニューラルネットワークを用いた天気予報 グラフニューラルネットワーク(GNN)を用いた天気予報は、気象データの複雑な空間的および時間的関係を捉えるための新しいアプローチとなる。 従来の天気予報手法は...
python

カウントベースのマルチアームドバンディット問題アプローチについて

  カウントベースのマルチアームドバンディット問題アプローチについて カウントベースのマルチアームドバンディット問題(Count-Based Multi-Armed Bandit Problem)は、異なるアクション(...
モバイルバージョンを終了
タイトルとURLをコピーしました