アルゴリズム:Algorithms 重複のあるグループ正則化の概要と実装例について 概要 重複のあるグループ正則化(Overlapping Group Lasso)は、機械学習や統計モデリングにおいて、特徴選択やモデルの係数の推定に使用される正則化手法の一種であり、通常のグループ正則化と... 2024.05.29 アルゴリズム:Algorithmsグラフ理論スパースモデリングスパースモデリング幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python 方策勾配法の概要とアルゴリズム及び実装例について 方策勾配法について 方策勾配法(Policy Gradient Methods)は、強化学習の一種で、特に方策(ポリシー)の最適化に焦点を当てる手法となる。方策は、エージェントが状態に対してどのような行動を選択すべ... 2024.01.19 pythonアルゴリズム:Algorithms強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics
python Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的... 2023.12.25 pythonアルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
幾何学:Geometry 交差エントロピー損失について 交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二... 2023.12.18 幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python Q-学習の概要とアルゴリズム及び実装例について Q-学習について Q-学習(Q-Learning)は、強化学習の一種で、エージェントが未知の環境を探索しながら最適な行動を学習するためのアルゴリズムとなる。Q-学習は、エージェントが行動価値関数(Q関数)を学習し、... 2023.11.10 pythonアルゴリズム:Algorithms強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics
アルゴリズム:Algorithms ガウス・エルミート積分の概要とアルゴリズム及び実装について ガウス・エルミート積分について ガウス・エルミート積分(Gaussian-Hermite Integration)は、数値積分の手法の1つで、特に確率密度関数がガウス分布(正規分布)であるような確率論的な問題や、量子力学... 2023.10.23 アルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
python ニュートン法の概要とアルゴリズム及び実装について ニュートン法について ニュートン法(Newton's method)は、非線形方程式や関数の数値的な解を求めるための反復的な最適化アルゴリズムの一つであり、主に方程式の根を求めるために使用され、連続的な関数の極小値や極大... 2023.10.16 pythonアルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning
微分積分:Calculus 勾配法の概要とアルゴリズムおよび実装例について 勾配法(Gradient Descent)について 勾配法は機械学習や最適化アルゴリズムで広く使用される手法の一つであり、そのの主な目的は、関数の最小値(または最大値)を見つけるため... 2023.10.09 微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning線形代数:Linear Algebra
アルゴリズム:Algorithms カルバック・ライブラー変分推定の概要と各種アルゴリズム及び実装 カルバック・ライブラー変分推定について カルバック・ライブラー変分推定(Kullback-Leibler Variational Estimation)は、確率分布間の差異を評価し、それを最小化することで、データ... 2023.09.12 アルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
アルゴリズム:Algorithms 最尤推定の概要とアルゴリズムおよびその実装について 最尤推定について 最尤推定(Maximum Likelihood Estimation, MLE)は、統計学において使用される推定方法の一つとなる。この方法は、与えられたデータや観測値に基づいて、モデルのパラメータを推定... 2023.09.06 アルゴリズム:Algorithmsベイズ推定微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics