幾何学:Geometry 交差エントロピー損失について 交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二... 2026.01.08 幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python Boltzmann Explorationの概要とアルゴリズム及び実装例について Boltzmann Explorationの概要 Boltzmann Explorationは、強化学習において探索と活用のバランスを取るための手法の一つであり、通常、"ε-グリーディ法(ε-greedy)の概要と... 2026.01.03 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
python Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的... 2026.01.02 pythonアルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
アルゴリズム:Algorithms 多目的探索アルゴリズムの概要と適用事例および実装例について 多目的探索アルゴリズムについて 多目的探索アルゴリズム(Multi-Objective Optimization Algorithm)は、複数の目的関数を同時に最適化するためのアルゴリズムとなる。多目的最適化は、1つの最適... 2025.12.24 アルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
python Q-学習の概要とアルゴリズム及び実装例について Q-学習について Q-学習(Q-Learning)は、強化学習の一種で、エージェントが未知の環境を探索しながら最適な行動を学習するためのアルゴリズムとなる。Q-学習は、エージェントが行動価値関数(Q関数)を学習し、... 2025.12.19 pythonアルゴリズム:Algorithms強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics
python Exponential Smoothingの概要とアルゴリズム及び実装例について Exponential Smoothingについて 指数平滑法(Exponential Smoothing)は、時系列データの予測やデータの平滑化に使用される統計的手法の一つであり、特に、過去の観測値を基に未... 2025.12.18 pythonアルゴリズム:Algorithms時系列データ解析最適化:Optimization機械学習:Machine Learning
python アンサンブル学習の概要とアルゴリズム及び実装例について アンサンブル学習について アンサンブル学習(Ensemble Learning)は、機械学習の一種で、複数の機械学習モデルを組み合わせて、より強力な予測モデルを構築する手法となる。単一のモデルよりも複数のモデルを組み合わ... 2025.12.05 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
微分積分:Calculus 勾配法の概要とアルゴリズムおよび実装例について 勾配法(Gradient Descent)について 勾配法は機械学習や最適化アルゴリズムで広く使用される手法の一つであり、そのの主な目的は、関数の最小値(または最大値)を見つけるため... 2025.11.26 微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning線形代数:Linear Algebra
python ニュートン法の概要とアルゴリズム及び実装について ニュートン法について ニュートン法(Newton's method)は、非線形方程式や関数の数値的な解を求めるための反復的な最適化アルゴリズムの一つであり、主に方程式の根を求めるために使用され、連続的な関数の極小値や極大... 2025.11.20 pythonアルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning
アルゴリズム:Algorithms ガウス・エルミート積分の概要とアルゴリズム及び実装について ガウス・エルミート積分について ガウス・エルミート積分(Gaussian-Hermite Integration)は、数値積分の手法の1つで、特に確率密度関数がガウス分布(正規分布)であるような確率論的な問題や、量子力学... 2025.11.14 アルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics