python Non-Negative Tensor Factorization (NTF)の概要とアルゴリズム及び実装例について Non-Negative Tensor Factorization (NTF)の概要 Non-Negative Tensor Factorization(非負テンソル分解、NTF)は、多次元データの表現を求めるための手法... 2024.01.29 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
アルゴリズム:Algorithms CP (CANDECOMP/PARAFAC) 分解の概要とアルゴリズム及び実装例 CP (CANDECOMP/PARAFAC) 分解の概要 CP分解(CANDECOMP/PARAFAC)は、テンソル分解の一種で、多次元データの分解手法の一つとなる。CP分解は、テンソルを複数のランク1テンソルの和として... 2024.01.22 アルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning線形代数:Linear Algebra
python 方策勾配法の概要とアルゴリズム及び実装例について 方策勾配法について 方策勾配法(Policy Gradient Methods)は、強化学習の一種で、特に方策(ポリシー)の最適化に焦点を当てる手法となる。方策は、エージェントが状態に対してどのような行動を選択すべ... 2024.01.19 pythonアルゴリズム:Algorithms強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics
python ディリクレ分布の概要と関連アルゴリズム及び実装例について ディリクレ分布の概要 ディリクレ分布(Dirichlet distribution)は、多変量確率分布の一種であり、主に確率変数の確率分布をモデリングするために使用されるものとなる。ディリクレ分布は、K個の非負実... 2024.01.08 pythonアルゴリズム:Algorithmsベイズ推定最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
python クラメール・ラウ・ローバー下界(Cramér-Rao Lower Bound, CRLB)の導出について クラメール・ラウ・ローバー下界(Cramér-Rao Lower Bound, CRLB)の導出について クラメール・ラウ・ローバー下界は、統計学において、ある推定量がどれだけ不確かさを持つかを測定するための下界... 2024.01.01 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
python Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的... 2023.12.25 pythonアルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
python Boltzmann Explorationの概要とアルゴリズム及び実装例について Boltzmann Explorationの概要 Boltzmann Explorationは、強化学習において探索と活用のバランスを取るための手法の一つであり、通常、"ε-グリーディ法(ε-greedy)の概要と... 2023.12.22 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
幾何学:Geometry 交差エントロピー損失について 交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二... 2023.12.18 幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python ヘッセ行列と正則性について ヘッセ行列について ヘッセ行列(Hessian matrix)は、多変数関数の2階偏導関数を行列として表現したものであり、一変数関数の2階導関数が2階導関数として考えられるように、多変数関数の各変数に関する2階偏導関数が... 2023.12.11 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning線形代数:Linear Algebra
python アンサンブル学習の概要とアルゴリズム及び実装例について アンサンブル学習について アンサンブル学習(Ensemble Learning)は、機械学習の一種で、複数の機械学習モデルを組み合わせて、より強力な予測モデルを構築する手法となる。単一のモデルよりも複数のモデルを組み合わ... 2023.11.27 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning