線形代数:Linear Algebra

python

Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)の概要とアルゴリズム及び実装例について

Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)について Stochastic Gradient Hamiltonian Monte Carlo(SGHMC)は、ハミル...
アルゴリズム:Algorithms

Temporal Fusion Transformerの概要とアルゴリズム及び実装例

Temporal Fusion Transformerの概要 Temporal Fusion Transformer (TFT) は、複雑な時系列データを扱うために開発されたディープラーニングモデルで、リッチ...
アルゴリズム:Algorithms

数え上げ問題の概要とアルゴリズム及び実装例について

数え上げ問題の概要 数え上げ問題(counting problem)は、組み合わせ論や確率論などの数学の分野で頻繁に取り組まれる問題の一つであり、これは、ある条件を満たす対象の総数を数え上げる問題として、しばしば組み...
アルゴリズム:Algorithms

フランク・ウォルフ法の概要と適用事例及び実装例

フランク・ウォルフ法の概要 フランク・ウォルフ法(Frank-Wolfe method)は、1956年にマルグリート・フランクとフィリップ・ウォルフによって提案された、非線形最適化問題を解くための数値計算アルゴリズムとな...
アルゴリズム:Algorithms

フロベニウスノルムの概要とアルゴリズム及び実装例

フロベニウスノルムの概要 フロベニウスノルムは、行列のノルムの一種であり、行列の要素の2乗和の平方根として定義されるものとなる。これは、行列 \( A \) のフロベニウスノルム \( ||A||_F \...
python

トレースノルムの概要と関連アルゴリズム及び実装例について

トレースノルムの概要 トレースノルム(または核ノルム)は、行列のノルムの一種であり、行列の特異値の和として定義されるものとなる。これは特に、行列の低ランク近似や行列の最小化問題において重要な役割を果たして...
python

ベイジアンニューラルネットワークの概要とアルゴリズム及び実装例について

ベイジアンニューラルネットワークについて ベイジアンニューラルネットワーク(BNN)は、確率論的な要素をニューラルネットワークに統合するアーキテクチャであり、通常のニューラルネットワークが確定論的であるのに対し、BNN...
python

TTM (Tensor-Train Matrix)の概要とアルゴリズム及び実装例について

TTM (Tensor-Train Matrix)の概要 Tensor-Train Matrix(TTM)は、テンソルのユニークな表現形式であり、行列のテンソル化を通じて行列のテンソル形式の表現を可能にするアプローチとな...
python

HOOI (High-Order Orthogonal Iteration)の概要とアルゴリズム及び実装例について

HOOI (High-Order Orthogonal Iteration)の概要 High-Order Orthogonal Iteration(HOOI)は、テンソルの高次元の"特異値分解(Singular Valu...
python

Alternating Least Squares for Matrix Factorization (ALS-MF)の概要とアルゴリズム及び実装例について

Alternating Least Squares for Matrix Factorization (ALS-MF)の概要 Alternating Least Squares for Matrix Factorizat...
モバイルバージョンを終了
タイトルとURLをコピーしました