ベイズ推定

python

ベイジアンネットワークの前進推論(Forward Inference)の概要

ベイジアンネットワークの前進推論(Forward Inference)の概要 ベイジアンネットワークの前進推論(Forward Inference)は、既知の情報をもとに、ネットワーク内の変数やノードの事後分...
python

ベイジアンネットワークの推論アルゴリズムについて

ベイジアンネットワークの推論アルゴリズムについて ベイジアンネットワークの推論は、ベイズの定理に基づいて事後分布を求める過程であり、主要な推論アルゴリズムにはいくつかの種類がある。以下に代表的なベイジアンネッ...
python

変分オートエンコーダ (Variational Autoencoder, VAE)の概要とアルゴリズム及び実装例について

変分オートエンコーダ (Variational Autoencoder, VAE)の概要 変分オートエンコーダ(Variational Autoencoder, VAE)は、生成モデルの一種であり、データの潜在表...
アルゴリズム:Algorithms

NUTSの概要とアルゴリズム及び実装例について

NUTSの概要 NUTS(No-U-Turn Sampler)は、"確率積分計算の為のMCMC法:メトロポリス法以外のアルゴリズム(HMC法)"でも述べているハミルトニアンモンテカルロ法(HMC)の一種であり、確...
python

ベイジアンニューラルネットワークの概要とアルゴリズム及び実装例について

ベイジアンニューラルネットワークについて ベイジアンニューラルネットワーク(BNN)は、確率論的な要素をニューラルネットワークに統合するアーキテクチャであり、通常のニューラルネットワークが確定論的であるのに対し、BNN...
python

ベイジアンネットワークを用いた推論と行動の統合によるアルゴリズムと実装例について

ベイジアンネットワークを用いた推論と行動の統合によるアルゴリズム ベイジアンネットワークを用いた推論と行動の統合は、確率的なモデルを利用してエージェントが環境とやり取りしながら最適な行動を選択する手法であり、ベイジ...
python

ソフトマックス関数の概要と関連アルゴリズム及び実装例について

ソフトマックス関数の概要 ソフトマックス関数(Softmax function)は、実数のベクトルを確率分布に変換するために使用される関数であり、通常、機械学習の分類問題において、モデルの出力を確率として解釈する...
python

ディリクレ分布の概要と関連アルゴリズム及び実装例について

ディリクレ分布の概要 ディリクレ分布(Dirichlet distribution)は、多変量確率分布の一種であり、主に確率変数の確率分布をモデリングするために使用されるものとなる。ディリクレ分布は、K個の非負実...
アルゴリズム:Algorithms

最尤推定の概要とアルゴリズムおよびその実装について

最尤推定について 最尤推定(Maximum Likelihood Estimation, MLE)は、統計学において使用される推定方法の一つとなる。この方法は、与えられたデータや観測値に基づいて、モデルのパラメータを推定...
ベイズ推定

ベイズ深層学習の概要と適用事例及び実装例

ベイズ深層学習について ベイズ深層学習は、ベイズ統計学の原則を深層学習に組み込む試みを指す。通常の深層学習では、モデルのパラメータは確率的でない値として扱われ、最適なパラメータを求めるために最適化アルゴリズムが使用され...
モバイルバージョンを終了
タイトルとURLをコピーしました