機械学習:Machine Learning

アルゴリズム:Algorithms

強化学習は何故必要なのか?適用事例と技術課題及び解決のアプローチ

イントロダクション chatGPTで有名なOpenAIのもう一つの側面として強化学習がある。chatGPTのベースとなっている"GPTの概要とアルゴリズム及び実装例について"で述べているGPTの肝は"深層学習におけ...
アルゴリズム:Algorithms

機械学習とルールの融合としての制約充足による線画のラベル付け

イントロダクション 画像情報のラベル付けは、後述する様に様々な機械学習のアプローチで実現できる。今回は、それら機械学習のアプローチとルールベースのアプローチである制約充足によるアプローチの融合について考えてみたいと思...
アルゴリズム:Algorithms

条件付き生成モデル(Conditional Generative Models)の概要と実装例

条件付き生成モデルについて 条件付き生成モデル(Conditional Generative Models)は、生成モデルの一種であり、特定の条件を与えた場合にデータを生成する能力を持つモデルとなる。条件付き生成モ...
アルゴリズム:Algorithms

ベイズ構造時系列モデルの概要と適用事例及び実装例について

ベイズ構造時系列モデルについて ベイズ構造時系列モデル(Bayesian Structural Time Series Model; BSTS)は、時間とともに変化する現象をモデル化する統計モデルの一種であり...
python

構造学習の概要と各種適用事例および実装例

  構造学習について 構造学習(Structural Learning)は、機械学習の一分野であり、データの構造や関係性を学習する手法を指し、通常、教師なし学習や半教師あり学習の枠組みで使用されるものとなる。 ...
python

機械学習における確率的最適化の概要と実装

機械学習における確率的最適化の概要 確率的最適化は、確率的な要素を含む最適化問題の解法を表し、機械学習での確率的最適化はモデルのパラメータを最適化する際にに広く使用されている手法となる。 一般的な最適化問題では、目...
アルゴリズム:Algorithms

統計的学習理論の概要(数式を使わない解説)

機械学習アルゴリズムの統計的性質に関する理論について 機械学習アルゴリズムの統計的性質に関する理論は、統計的学習理論として知られている。統計的学習理論は、データから学習する際の確率的な性質や最適化の理論的な枠組みを提供して...
アルゴリズム:Algorithms

ゲーム理論の概要とAI技術との融合と実装例

ゲーム理論の概要 ゲーム理論とは、競争や協力など、相互に影響を与えあう複数の意思決定者(プレーヤー)が存在する場合に、彼らの戦略とその結果を数学的にモデル化することで、最適な戦略を決定するための理論となる...
アルゴリズム:Algorithms

粒子群最適化の概要と実装について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される粒子群最適化の概要と実装について(Clojure、CAPSOS、R language、pso、pyhton、pyswarm、ニューラルネットワークのトレーニング、パラメータの最適化、組合せ最適化、ロボット制御、パターン認織)
Clojure

一般化線形モデルの概要と各種言語による実装

一般化線形モデルの概要 一般化線形モデル(Generalized Linear Model, GLM)は、統計モデリングや機械学習の手法の一つであり、応答変数(目的変数)と説明変数(特徴量)の間の関係を確率的に...
モバイルバージョンを終了
タイトルとURLをコピーしました