機械学習:Machine Learning

アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習における各種モデルの近似計算

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習における各種モデルの近似計算(構造化変分推論、変分推論アルゴリズム、混合モデル、共役事前分布、KLダイバージェンス、ELBO、evidence lower bound、崩壊型ギブスサンプリング、ブロッキングギブスサンプリング、近似推論)
web技術:web technology

ISWC2022論文集より

  ISWC2022論文集より 知識情報をハンドリングする人工知能技術の一つであるセマンティックウェブ技術の国際学会であるISWC2022より。前回はISWC2021について述べた。今回は、ISWC 2022のについて述べ...
推論技術:inference Technology

保護中: 説明できる人工知能(12)モデル非依存の解釈(グローバルサロゲート (Global Surrogate))

このコンテンツはパスワードで保護されています。閲覧するには以下にパスワードを入力してください。 パスワード:
アルゴリズム:Algorithms

保護中: 強化学習に対するニューラルネットワークの適用 価値評価をパラメータを持った関数で実装するValue Function Approximation

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習に対するニューラルネットワークの適用 価値評価をパラメータを持った関数で実装する例(CartPole、Q-table、TD誤差、パラメータ更新、Q-Learning、MLPRegressor、Python)
Clojure

保護中: Clojureを用いたネットワーク解析(2)Glitteringを使ったグラフ中の三角の計算

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojure/Glitteringを使ったグラフ中の三角の計算を用いたネットワーク解析(GraphX、Pregel API、Twitterデータセット、カスタム三角形カウントアルゴリズム、メッセージ送信関数、メッセージマージ関数、外部結合、RDD、頂点属性、Apache Spark、Sparkling、MLlib、Glittering、三角カウント、edge cut戦略、random-vertex-cut戦略、ソーシャルネットワーク、グラフ並列計算機能、Hadoop、データ並列システム、RDG、Resilient Distributed Graph、Hama、Giraph)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の為のリグレット解析について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の為のリグレット解析について(等比数列の和、ガンマ関数、トンプソン抽出、ベータ分布、裾確率、ミルズ比、部分積分、事後サンプル、共役事前分布、ベルヌーイ分布、累積分布関数、期待値、DMED方策、UCB方策、チェルノフ・へフディングの不等式、尤度、上界、下界、UCBスコア、アーム)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての再生核ヒルベルト空間

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての再生核ヒルベルト空間(正規直交基底、ヒルベルト空間、ガウシアンカーネル、連続関数、カーネル関数、完備化空間、内積空間、同値類、同値関係、コーシー列、線型空間、ノルム、内積の完備化)
アルゴリズム:Algorithms

保護中: バッチ型確率的最適化 – 確率的双対座標降下法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバッチ型確率的最適化としての確率的双対座標降下法のアルゴリズム(ネステロフの可測法、SDCA、ミニバッチ、計算時間、バッチ近接勾配法、最適解、作用素ノルム、最大固有値、フェンシェルの双対定理、主問題、双対問題、近接写像、平滑化ヒンジ損失、オンライン型確率的最適化、エラスティックネット正則化、リッジ正則化、ロジスティック損失、ブロック座標降下法、バッチ型確率的最適化)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としてのニュートン法と修正ニュートン法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための機械学習の連続最適化としてのニュートン法と修正ニュートン法(コレスキー分解、正定値行列、ヘッセ行列、ニュートン方向、探索方向、テイラー展開)
アルゴリズム:Algorithms

保護中: 何がスパース性を誘発して、どのような問題にスパース性は適しているのか?

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース学習に対する何がスパース性を誘発して、どのような問題にスパース性は適しているのか?について(交互方向乗数法、スパース正則化、主問題、双対問題、双対拡張ラグランジュ法、DAL法、SPAMS、sparse modeling software、バイオインフォマティス、画像雑音除去、アトミックノルム、L1ノルム、トレースノルム、非ゼロ要素の数)
モバイルバージョンを終了
タイトルとURLをコピーしました