バンディッド問題

アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 確率一致法とトンプソン抽出

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 確率一致法とトンプソン抽出(最悪時リグレット最小化、問題依存リグレット最小化、最悪時リグレット上界、問題依存リグレット、最悪時リグレット、MOSS方策、標本平均、補正項、UCBのリグレット上界、敵対的バンディット問題、トンプソン抽出、ベルヌーイ分布、UCB方策、確率的一致法、確率的バンディット、ベイズ統計、KL-UCCB方策、ソフトマックス方策、チェルノフ・ヘフディングの不等式)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 尤度に基づく方策(UCBとMED方策)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 尤度に基づくUCB方策とMED方策(MED方策(Indexed Mimimum Empirical Divergence policy)、KL-UCB方策、DMED方策、リグレット上界、ベルヌーイ分布、大偏差原理、Deterministic Minimum Empirical Divergence policy、ニュートン法、KLダイバージェンス、ビンスカーの不等式、ヘフディングの不等式、チェルノフ・ヘフディングの不等式、Upper Confidence Bound)
アルゴリズム:Algorithms

保護中: 確率的バンディッド問題の方策 -理論的限界とε-貪欲法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 としての理論的限界とε-貪欲法、UCB法、一貫性をもつ方策のリグレット下界、KLダイバージェンス
バンディッド問題

保護中: 確率的バンディッド問題の基礎

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の基礎(大偏差原理とベルヌーイ分布での例、チェルノフ・へフディングの不等式、サノフの定理、へフディングの不等式、カルバックライブラー・ダイバージェンス、確率質量関数、裾確率、中心極限定理による確率近似)
アルゴリズム:Algorithms

保護中: バンディッド問題の概要と歴史と強化学習/オンライン学習との関係

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバンディッド問題の概要と歴史と強化学習/オンライン学習との関係(適応割り当て、逐次割り当て、確率的バンディット、敵対的バンディット、最適腕識別、Q学習、探索と知識利用のトレードオフ、リグレット)
バンディッド問題

バンディット問題の理論とアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される最適な戦略を選ぶためのバンディット問題の理論とアルゴリズムについて
モバイルバージョンを終了
タイトルとURLをコピーしました