python Dynamic Graph Neural Networks(D-GNN)の概要とアルゴリズム及び実装例について Dynamic Graph Neural Networks(D-GNN)について Dynamic Graph Neural Networks(D-GNN)は、動的なグラフデータに対処するために設計されたグラ... 2026.01.28 pythonアルゴリズム:Algorithmsグラフ理論時系列データ解析機械学習:Machine Learning深層学習:Deep Learning
python Non-Negative Tensor Factorization (NTF)の概要とアルゴリズム及び実装例について Non-Negative Tensor Factorization (NTF)の概要 Non-Negative Tensor Factorization(非負テンソル分解、NTF)は、多次元データの表現を求めるための手法... 2026.01.26 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
python ヘッセ行列と正則性について ヘッセ行列について ヘッセ行列(Hessian matrix)は、多変数関数の2階偏導関数を行列として表現したものであり、一変数関数の2階導関数が2階導関数として考えられるように、多変数関数の各変数に関する2階偏導関数が... 2026.01.15 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning線形代数:Linear Algebra
人工知能:Artificial Intelligence チューリングテストとサールの反論と人工知能 チューリングテストとそれに対するサールの反論 機械が知能を持っていると判断するためのテストとして、"会話とAI(チューリングテストから考える)"で述べているチューリングテストがある。 このテストは、19... 2026.01.11 人工知能:Artificial Intelligence哲学:philosophy数学:Mathematics
幾何学:Geometry 交差エントロピー損失について 交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二... 2026.01.08 幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python Boltzmann Explorationの概要とアルゴリズム及び実装例について Boltzmann Explorationの概要 Boltzmann Explorationは、強化学習において探索と活用のバランスを取るための手法の一つであり、通常、"ε-グリーディ法(ε-greedy)の概要と... 2026.01.03 pythonアルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
python Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的... 2026.01.02 pythonアルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
アルゴリズム:Algorithms ダイナミックグラフ埋め込みによる時間的な変化を考慮に入れるグラフデータ解析 ダイナミックグラフ埋め込みによる時間的な変化を考慮に入れるグラフデータ解析 ダイナミックグラフ埋め込み(Dynamic Graph Embedding)は、時間的な変化を考慮に入れるグラフデータ解析のための強力... 2025.12.27 アルゴリズム:Algorithmsグラフ理論時系列データ解析機械学習:Machine Learning
アルゴリズム:Algorithms 多目的探索アルゴリズムの概要と適用事例および実装例について 多目的探索アルゴリズムについて 多目的探索アルゴリズム(Multi-Objective Optimization Algorithm)は、複数の目的関数を同時に最適化するためのアルゴリズムとなる。多目的最適化は、1つの最適... 2025.12.24 アルゴリズム:Algorithms最適化:Optimization機械学習:Machine Learning
アルゴリズム:Algorithms ネットワークアライメントによる時間的な変化を考慮に入れるグラフデータ解析 ネットワークアライメントによる時間的な変化を考慮に入れるグラフデータ解析 ネットワークアライメントは、異なるネットワークやグラフ間で類似性を見つけ、それらをマッピングし合わせる技術であり、時間的な変化を考慮に入... 2025.12.20 アルゴリズム:Algorithmsグラフ理論時系列データ解析機械学習:Machine Learning