数学:Mathematics

python

方策勾配法の概要とアルゴリズム及び実装例について

方策勾配法について 方策勾配法(Policy Gradient Methods)は、強化学習の一種で、特に方策(ポリシー)の最適化に焦点を当てる手法となる。方策は、エージェントが状態に対してどのような行動を選択すべ...
アルゴリズム:Algorithms

時間予測モデルを用いた時間的な変化を考慮に入れるグラフデータ解析

時間予測モデルを用いた時間的な変化を考慮に入れるグラフデータ解析 時間予測モデルを用いた時間的な変化を考慮に入れるグラフデータ解析は、グラフデータ内の時間的なパターン、トレンド、予測を理解するために使用される。...
アルゴリズム:Algorithms

CP (CANDECOMP/PARAFAC) 分解の概要とアルゴリズム及び実装例

CP (CANDECOMP/PARAFAC) 分解の概要 CP分解(CANDECOMP/PARAFAC)は、テンソル分解の一種で、多次元データの分解手法の一つとなる。CP分解は、テンソルを複数のランク1テンソルの和として...
python

Dynamic Graph Neural Networks(D-GNN)の概要とアルゴリズム及び実装例について

Dynamic Graph Neural Networks(D-GNN)について Dynamic Graph Neural Networks(D-GNN)は、動的なグラフデータに対処するために設計されたグラ...
python

Non-Negative Tensor Factorization (NTF)の概要とアルゴリズム及び実装例について

Non-Negative Tensor Factorization (NTF)の概要 Non-Negative Tensor Factorization(非負テンソル分解、NTF)は、多次元データの表現を求めるための手法...
python

ヘッセ行列と正則性について

ヘッセ行列について ヘッセ行列(Hessian matrix)は、多変数関数の2階偏導関数を行列として表現したものであり、一変数関数の2階導関数が2階導関数として考えられるように、多変数関数の各変数に関する2階偏導関数が...
人工知能:Artificial Intelligence

チューリングテストとサールの反論と人工知能

チューリングテストとそれに対するサールの反論 機械が知能を持っていると判断するためのテストとして、"会話とAI(チューリングテストから考える)"で述べているチューリングテストがある。 このテストは、19...
幾何学:Geometry

交差エントロピー損失について

交差エントロピー損失について 交差エントロピー損失(Cross-Entropy Loss)は、機械学習や深層学習において、分類タスクのモデルの性能を評価し、最適化するために使用される一般的な損失関数の一つであり、特に、二...
python

Boltzmann Explorationの概要とアルゴリズム及び実装例について

Boltzmann Explorationの概要 Boltzmann Explorationは、強化学習において探索と活用のバランスを取るための手法の一つであり、通常、"ε-グリーディ法(ε-greedy)の概要と...
python

Gelman-Rubin統計量の概要と関連アルゴリズム及び実装例について

Gelman-Rubin統計量の概要 Gelman-Rubin統計量(またはGelman-Rubin診断、Gelman-Rubin統計テスト)は、マルコフ連鎖モンテカルロ(MCMC)サンプリング法の収束診断のための統計的...
モバイルバージョンを終了
タイトルとURLをコピーしました