Boosting

アルゴリズム:Algorithms

Protected: Statistical Mathematical Theory for Boosting

Statistical and mathematical theory boosting generalized linear model, modified Newton method, log likelihood, weighted least squares method, boosting, coordinate descent method, iteratively weighted least squares method, iteratively reweighted least squares method, IRLS method, weighted empirical discriminant error, parameter update law, Hessian matrix, corrected Newton method, Newton method, Newton method, iteratively reweighted least squares method, IRLS method) used for digital transformation, artificial intelligence, machine learning tasks. iteratively reweighted least square method, IRLS method, weighted empirical discriminant error, parameter update law, Hessian matrix, corrected Newton method, modified Newton method, Newton method, Newton method, link function, logistic loss, logistic loss, boosting algorithm, logit boost, exponential loss, convex margin loss, adaboost, weak hypothesis, empirical margin loss, nonlinear optimization
アルゴリズム:Algorithms

Protected: Hedge Algorithm and Exp3 Measures in the Adversary Bandid Problem

Hedge algorithm and Exp3 measures in adversarial bandit problems utilized in digital transformation, artificial intelligence, and machine learning tasks pseudo-regret upper bound, expected cumulative reward, optimal parameters, expected regret, multi-armed bandit problem, Hedge Algorithm, Expert, Reward version of Hedge algorithm, Boosting, Freund, Chabile, Pseudo-Code, Online Learning, PAC Learning, Question Learning
アルゴリズム:Algorithms

Protected: Basics of gradient method (linear search method, coordinate descent method, steepest descent method and error back propagation method)

Fundamentals of gradient methods utilized in digital transformation, artificial intelligence, and machine learning tasks (linear search, coordinate descent, steepest descent and error back propagation, stochastic optimization, multilayer perceptron, adaboost, boosting, Wolf condition, Zotendijk condition, Armijo condition, backtracking methods, Goldstein condition, strong Wolf condition)
アルゴリズム:Algorithms

Machine Learning by Ensemble Methods – Fundamentals and Algorithms Reading Notes

Fundamentals and algorithms in machine learning with ensemble methods used in digital transformation, artificial intelligence and machine learning tasks class unbalanced learning, cost-aware learning, active learning, semi-supervised learning, similarity-based methods, clustering ensemble methods, graph-based methods, festival label-based methods, transformation-based methods, clustering, optimization-based pruning, ensemble pruning, join methods, bagging, boosting
アルゴリズム:Algorithms

Protected: Overview of Discriminant Adaptive Losses in Statistical Mathematics Theory

Overview of Discriminant Conformal Losses in Statistical Mathematics Theory (Ramp Losses, Convex Margin Losses, Nonconvex Φ-Margin Losses, Discriminant Conformal, Robust Support Vector Machines, Discriminant Conformity Theorems, L2-Support Vector Machines, Squared Hinge Loss, Logistic Loss, Hinge Loss, Boosting, Exponential Losses, Discriminant Conformity Theorems for Convex Margin Losses, Bayes Rules, Prediction Φ-loss, Prediction Discriminant Error, Monotonic Nonincreasing Convex Function, Empirical Φ-loss, Empirical Discriminant Error)
推論技術:inference Technology

Protected: Classification (4) Group learning(Ensemble Learning, Random Forest) and evaluation of learning results(Cross-validation method)

Algorithms for collective learning for data classification and evaluation of classification results (ensemble learning, bagging, boosting, random forests, cross-validation)
Exit mobile version
タイトルとURLをコピーしました