Gaussian Processes

アルゴリズム:Algorithms

Protected: Unsupervised Learning with Gaussian Processes (2) Extension of Gaussian Process Latent Variable Model

Extension of Gaussian process latent variable models as unsupervised learning by Gaussian processes, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learningtasks ,infinite warp mixture models, Gaussian process dynamics models, Poisson point processes, log Gaussian Cox processes, latent Gaussian processes, elliptic slice sampling
アルゴリズム:Algorithms

Protected: Spatial statistics of Gaussian processes, with application to Bayesian optimization

Spatial statistics of Gaussian processes as an application of stochastic generative models used in digital transformation, artificial intelligence, and machine learning tasks, and tools ARD, Matern kernelsfor Bayesian optimization GPyOpt and GPFlow and GPyTorch
アルゴリズム:Algorithms

Protected: Equivalence of neural networks (deep learning) and Gaussian processes

On the equivalence of Gaussian processes and neural networks, an applied model of stochastic generative models used in digital transformation, artificial intelligence, and machine learning tasks from Neal's paper
アルゴリズム:Algorithms

Protected: Stochastic Generative Models and Gaussian Processes(3) Representation of Probability Distributions

Stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks and representation of probability distributions in samples as a basis for Gaussian processes ,weighted sampling, kernel density estimation, distribution estimation using neural nets
アルゴリズム:Algorithms

Protected: Stochastic Generative Models and Gaussian Processes(2)Maximum Likelihood and Bayesian Estimation

Maximum Likelihood and Bayesian Estimation Overview for Probabilistic Generative Models and Gaussian Process Fundamentals Used in Digital Transformation, Artificial Intelligence, and Machine Learning Tasks
python

GPy – A Python-based framework for Gaussian processes

GPy Gaussian regression problem, auxiliary variable method, sparse Gaussian regression, Bayesian GPLVM, latent variable model with Gaussian processes, a Python-based implementation of Gaussian processes, an application of stochastic generative models used in digital transformation, artificial intelligence and machine learning tasks.
Clojure

Implementation of Gaussian Processes in Clojure

Implementation of Gaussian processes in Clojure using fastmath as an extension of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks
アルゴリズム:Algorithms

Stochastic Generative Models and Gaussian Processes(1) Basis of Stochastic Models

Stochastic generative models for digital transformation, artificial intelligence, and machine learning tasks and fundamentals of stochastic models to understand Gaussian processes (independence, conditional independence, simultaneous probability, peripheralization and graphical models)
アルゴリズム:Algorithms

Protected: Gaussian Processes – The Advantages of Functional Clouds and Their Relationship to Regression Models, Kernel Methods, and Physical Models

Gaussian Processes as Applications of Stochastic Generative Models for Digital Transformation (DX), Artificial Intelligence (AI), and Machine Learning (ML) Tasks Miscellaneous Function Clouds Advantages and Regression Models and their Relationship to Kernel Methods and Physical Models
アルゴリズム:Algorithms

Protected: Overview of Gaussian Processes(2)Gaussian Processes and Kernels

Gaussian processes and kernel functions (Mattern kernel, character kernel, Fisher kernel, HMM's marginalized kernel, linear kernel, exponential kernel, periodic kernel, RBF kernel), which are dimensionless stochastic generative models used for digital transformation, artificial intelligence and machine learning tasks
Exit mobile version
タイトルとURLをコピーしました