Heffding's Inequality

アルゴリズム:Algorithms

Protected: Optimal arm identification and A/B testing in the bandit problem_1

Optimal arm identification and A/B testing in bandit problems for digital transformation, artificial intelligence, and machine learning tasks Heffding's inequality, optimal arm identification, sample complexity, sample complexity, riglet minimization, cumulative riglet minimization, cumulative reward maximization, ε-optimal arm identification, simple riglet minimization, ε-best arm identification, KL-UCB strategy, KL divergence) cumulative reward maximization, ε-optimal arm identification, simple liglet minimization, ε-best arm identification, KL-UCB strategy, KL divergence, A/B testing of the normal distribution, fixed confidence, fixed confidence
スパースモデリング

Protected: Theory of Noisy L1-Norm Minimization as Machine Learning Based on Sparsity (1)

Theory of L1 norm minimization with noise as sparsity-based machine learning for digital transformation, artificial intelligence, and machine learning tasks Markov's inequality, Heffding's inequality, Berstein's inequality, chi-square distribution, hem probability, union Bound, Boolean inequality, L∞ norm, multidimensional Gaussian spectrum, norm compatibility, normal distribution, sparse vector, dual norm, Cauchy-Schwartz inequality, Helder inequality, regression coefficient vector, threshold, k-sparse, regularization parameter, inferior Gaussian noise
アルゴリズム:Algorithms

Protected: Measures for Stochastic Banded Problems Likelihood-based measures (UCB and MED measures)

Measures for Stochastic Banded Problems Likelihood-based UCB and MED measures (Indexed Maximum Empirical Divergence policy, KL-UCB measures, DMED measures, Riglet upper bound, Bernoulli distribution, Large Deviation Principle, Deterministic Minimum Empirical Divergence policy, Newton's method, KL divergence, Binsker's inequality, Heffding's inequality, Chernoff-Heffding inequality, Upper Confidence Bound)
アルゴリズム:Algorithms

Protected: Basic Framework of Statistical Mathematics Theory

Basic framework of statistical mathematics theory used in digital transformation, artificial intelligence, and machine learning tasks regularization, approximation and estimation errors, Höfding's inequality, prediction discriminant error, statistical consistency, learning algorithms, performance evaluation, ROC curves, AUC, Bayes rules, Bayes error, prediction loss, empirical loss
Exit mobile version
タイトルとURLをコピーしました