Jensen's Inequality

微分積分:Calculus

Protected: Complexity of Hypothesis Sets in Statistical Mathematics Theory

Complexity of sets of hypotheses in statistical mathematical theory used in digital transformation, artificial intelligence, and machine learning tasks Rademacher complexity, VC dimension, large number factor, law of large uniform numbers, decision stocks, set of linear discriminators, set of linear functions, Cauchy-Schwartz inequality, Jensen inequality, Masar's complement, Talagrande's complement, empirical Rademacher complexity, Sauer's complement, Radon's theorem
アルゴリズム:Algorithms

Protected: Computational Methods for Gaussian Processes(2)Variational Bayesian Method and Stochastic Gradient Method

Calculations using variational Bayesian and stochastic gradient methods for Gaussian process models, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks Kullback-Leibler information content, Jensen inequality, evidence lower bound function, mini-batch method, evidence lower bound, variational posterior distribution, evidence variational lower bound
オンライン学習

Protected: Online convex optimization (3) exp concavity and ONS

Convex optimization for online prediction for digital transformation , artificial intelligence , and machine learning tasks (the case of exp concavity and ONS).
微分積分:Calculus

Protected: Sequential Update Type Anomaly Detection by Mixture Distribution Model – Jensen’s Inequality and EM Method

Overview of sequential update anomaly detection using mixture distribution models (Jensen's inequality, EM method), which is the most popular method used for digital transformation and artificial intelligence tasks.
Exit mobile version
タイトルとURLをコピーしました