Linear Search

アルゴリズム:Algorithms

Protected: Optimization for the main problem in machine learning

Optimization for main problems in machine learning used in digital transformation, artificial intelligence, and machine learning tasks (barrier function method, penalty function method, globally optimal solution, eigenvalues of Hesse matrix, feasible region, unconstrained optimization problem, linear search, Lagrange multipliers for optimality conditions, integration points, effective constraint method)
アルゴリズム:Algorithms

Protected: Conjugate gradient and nonlinear conjugate gradient methods as continuous optimization in machine learning

Conjugate gradient methods as continuous machine learning optimization for digital transformation, artificial intelligence, and machine learning tasks (moment method, nonlinear conjugate gradient method, search direction, inertia term, Polak-Ribiere method, linear search, Wolf condition, Dai-Yuan method, strong Wolf condition, Fletcher-Reeves method, global convergence, Newton method, rapid descent method, Hesse matrix, convex quadratic function, conjugate gradient method, minimum eigenvalue, maximum eigenvalue, affine subspace, conjugate direction method, coordinate descent method)
アルゴリズム:Algorithms

Protected: Basics of gradient method (linear search method, coordinate descent method, steepest descent method and error back propagation method)

Fundamentals of gradient methods utilized in digital transformation, artificial intelligence, and machine learning tasks (linear search, coordinate descent, steepest descent and error back propagation, stochastic optimization, multilayer perceptron, adaboost, boosting, Wolf condition, Zotendijk condition, Armijo condition, backtracking methods, Goldstein condition, strong Wolf condition)
Exit mobile version
タイトルとURLをコピーしました