Noisy

アルゴリズム:Algorithms

Protected: Theory of Noisy L1-Norm Minimization as Machine Learning Based on Sparsity (2)

Theory of noisy L1 norm minimization as machine learning based on sparsity for digital transformation, artificial intelligence, and machine learning tasks numerical examples, heat maps, artificial data, restricted strongly convex, restricted isometric, k-sparse vector, norm independence, subdifferentiation, convex function, regression coefficient vector, orthogonal complementary space
スパースモデリング

Protected: Theory of Noisy L1-Norm Minimization as Machine Learning Based on Sparsity (1)

Theory of L1 norm minimization with noise as sparsity-based machine learning for digital transformation, artificial intelligence, and machine learning tasks Markov's inequality, Heffding's inequality, Berstein's inequality, chi-square distribution, hem probability, union Bound, Boolean inequality, L∞ norm, multidimensional Gaussian spectrum, norm compatibility, normal distribution, sparse vector, dual norm, Cauchy-Schwartz inequality, Helder inequality, regression coefficient vector, threshold, k-sparse, regularization parameter, inferior Gaussian noise
Exit mobile version
タイトルとURLをコピーしました