Taylor's Theorem

アルゴリズム:Algorithms

Protected: Unconstrained optimization for continuous optimization in machine learning

Unconstrained Optimization for Continuous Optimization in Machine Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks machine epsilon, stopping conditions without scaling, stopping conditions with scaling, Taylor's theorem, stopping conditions for optimization algorithms, Hesse matrix
微分積分:Calculus

Protected: Fundamentals of Convex Analysis as a Basic Matter for Sequential Optimization in Machine Learning

Basics of convex analysis as a fundamental matter of continuous optimization utilized in digital transformation, artificial intelligence, and machine learning tasks subgradient, subdifferential, conjugate function, closed truly convex function, conjugate function, strongly convex function, closed truly convex function, upper and lower bounds on function values, Hesse matrix, epigraph, Taylor's theorem, relative interior, Ahuynh envelope, continuity, convex envelope, convex function, convex set
アルゴリズム:Algorithms

Fundamentals of Continuous Optimization – Calculus and Linear Algebra

Fundamentals of Continuous Optimization - Calculus and Linear Algebra (Taylor's theorem, Hesse matrix, Landau's symbol, Lipschitz continuity, Lipschitz constant, implicit function theorem, Jacobi matrix, diagonal matrix, eigenvalues, nonnegative definite matrix, positive definite matrix, subspace, projection, 1-rank update, natural gradient method, quasi Newton method, Sherman-Morrison formula, norm, Euclidean norm, p-norm, Schwartz inequality, Helder inequality, function on matrix space)
Exit mobile version
タイトルとURLをコピーしました