Weaknesses

アルゴリズム:Algorithms

Protected: Overview of Weaknesses and Countermeasures in Deep Reinforcement Learning and Two Approaches to Improve Environment Recognition

An overview of the weaknesses and countermeasures of deep reinforcement learning utilized in digital transformation, artificial intelligence, and machine learning tasks and two approaches of improving environmental awareness Mixture Density Network, RNN, Variational Auto Encoder, World Modles, Expression Learning, Strategy Network Compression, Model Free Learning, Sample-Based Planning Model, Dyna, Simulation-Based, Sample-Based, Gaussian Process, Neural Network, Transition Function, Reward Function) World Modles, Representation Learning, Strategy Network Compression, Model-Free Learning, Sample-Based Planning Model, Dyna, Simulation-Based, Sample-Based, Gaussian Process, Neural Network, Transition Function, Reward Function, Simulator , learning capability, transition capability
アルゴリズム:Algorithms

Protected: Value Assessment and Policy and Weaknesses in Deep Reinforcement Learning

Value assessment and strategies and weaknesses in deep reinforcement learning used for digital transformation, artificial intelligence, and machine learning tasks poor sample efficiency, difficulty in validating methods as well, impact of implementation practices on performance, library initial values, poor reproducibility, over-training, local optimum, dexterity, TRPO, PPO, continuous value control, image control, policy-based, value-based
Exit mobile version
タイトルとURLをコピーしました