2022-01

セマンテックウェブ技術:Semantic web Technology

ISWC2010論文集より

  ISWC2010論文集より 知識情報をハンドリングする人工知能技術の一つであるセマンティックウェブ技術の国際学会であるISWC2010より。 前回はISWC2009について述べた。今回は中国の上海で開かれ...
グラフ理論

構造学習

構造学習について データが持つ構造を学習することは、そのデータが何であるかという解釈を行う上で重要なものとなる。構造学習の中で最もシンプルなもは、階層的なクラスタリングであり、決定木による学習の基本的な機械学習アルゴリズム...
微分積分:Calculus

機械学習プロフェッショナルシリーズ「機械学習のための連続最適化」読書メモ

サマリー 機械学習における連続最適化とは、ニューラルネットワークの重みやバイアスの最適化、回帰分析のパラメータ推定、SVMのパラメータ推定等の変数が実数値をとる最適化問題を解く手法となる。連続最適化の代表的な手法には、勾配降...
Symbolic Logic

ISWC2009論文集より

  ISWC2009論文集より 知識情報をハンドリングする人工知能技術の一つであるセマンティックウェブ技術の国際学会であるISWC2009より。 前回はISWC2008について述べた。今回はアメリカのワシント...
IOT技術:IOT Technology

保護中: モデルフリー型の強化学習(2)- 方策反復法(Q学習法、SARSA、アクタークリック法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用されるモデルフリー型強化学習への価値反復法(Q学習法、SARSA法、アクター・クリティック法)
python

機械学習スタートアップシリーズ「Pythonで学ぶ強化学習」

サマリー 強化学習は、機械学習の一分野であり、学習を行う主体であり、環境とやり取りをし、行動を選択するエージェント(Agent)と呼ばれる主体が、未知の環境や複雑な問題を持った環境(Enviroment)という状況の...
オンライン学習

保護中: モデルフリー型の強化学習(1)- 価値反復法(モンテカルロ法、TD法、TD(λ)法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習に活用されるモデルフリー型強化学習への価値反復法(モンテカルロ法、TD法、TD(λ)法)適用
オンライン学習

保護中: 探索と活用のトレードオフ解消-リグレットと確率的最適方策、ヒューリスティクス

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるリグレットと確率的最適方策、ヒューリスティクスを用いた強化学習(探索と活動のトレードオフ解消
IOT技術:IOT Technology

時系列データ解析

時系列データの学習の概要 時系列データとは、株価や気温、トラフィック量などの時間の経過に応じて値が変化するデータのことを呼ぶ。この時系列データに対して機械学習を適用することで、大量のデータを学習し、未知のデ...
オンライン学習

保護中: プランニング問題(2)動的計画法の実装(価値反復法と方策反復法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習としてのプランニング問題への動的計画法の実装(価値反復法と方策反復法)
モバイルバージョンを終了
タイトルとURLをコピーしました