統計数学理論

アルゴリズム:Algorithms

保護中: 統計数学理論による多値判別の判別適合的損失と各種損失関数への適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論による多値判別の判別適合的損失と各種損失関数への適用(識別モデル損失、判別適合的、狭義順序保存特性、ロジスティックモデル、最尤推定、非負値凸関数、1対他損失、制約付き比較損失、凸非負値関数、ヒンジ損失、ペア比較損失、多値サーポートベクトルマシン、単調非増加関数、予測判別誤差、予測ψ-損失、可測関数)
アルゴリズム:Algorithms

保護中: 統計数学理論による多値判別でのラデマッハ複雑度と予測判別誤差の評価

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに用いられる統計数学理論による多値判別でのラデマッハ複雑度と予測判別誤差(凸2次計画問題、数理計画法、判別機、予測判別誤差、ベイズ誤差、多値サポートベクトルマシン、表現定理、ラデマッハ複雑度、多値マージン、正則化項、経験損失、再生核ヒルベルト空間、ノルム制約、リプシッツ連続性、予測Φp-多値マージン損失、経験Φ-多値マージン損失、一様バウンド、判別関数、判別器)
アルゴリズム:Algorithms

保護中: 統計数学理論によるブースティング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるブースティング(一般化線型モデル、修正ニュートン法、対数尤度、重み付き最小2乗法、ブースティング、座標降下法、反復重み付け最小2乗法、iteratively reweighted least square method、IRLS method、重み付き経験判別誤差、パラメータ更新則、へシアン行列、補正ニュートン法、modified Newton method、ニュートン法、Newton method、リンク関数、ロジスティック損失、logistic loss、ブースティング・アルゴリズム、ロジットブースト、指数損失、凸マージン損失、アダブースト、弱仮説、経験マージン損失、非線形最適化)
アルゴリズム:Algorithms

保護中: 統計数学理論によるν-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるν-サポートベクトルマシンの概要(カーネル関数、有界性、経験マージン判別誤差、バイアス項なしモデル、再生核ヒルベルト空間、予測判別誤差、一様バウンド、統計的一致性、C-サポートベクトルマシン、対応関係、統計モデルの自由度、双対問題、勾配降下、最小距離問題、判別境界、幾何学的解釈、2値判別、経験マージン判別誤差、経験判別誤差、正則化パラメータ、ミニマックス定理、グラム行列、ラグランジュ関数)
アルゴリズム:Algorithms

保護中: 統計数学理論によるC-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるサポートベクトルマシン C-サポートベクトルマシン(サポートベクトル比、マルコフの不等式、確率不等式、予測判別誤差、1つ抜き交差確認法、LOOCV、判別器、相補性条件、主問題、双対問題、最適解、1次凸最適化問題、判別境界、判別関数、ラグランジュ関数、極限条件、スレイター制約想定、ミニマックス定理、グラム行列、ヒンジ損失、マージン損失、凸関数、ベイズ誤差、正則化パラメータ)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度(グラム行列、仮説集合、判別境界、過剰適合、マージン損失、判別関数、予測半正定値、普遍カーネル、再生核ヒルベルト空間、予測判別誤差、L1ノルム、ガウスカーネル、指数カーネル、2項カーネル、コンパクト集合、経験ラデマッハ複雑度、ラデマッハ複雑度、表現定理)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての再生核ヒルベルト空間

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての再生核ヒルベルト空間(正規直交基底、ヒルベルト空間、ガウシアンカーネル、連続関数、カーネル関数、完備化空間、内積空間、同値類、同値関係、コーシー列、線型空間、ノルム、内積の完備化)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としてのカーネル関数

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としてのカーネル関数(ガウシアンカーネル、多項式カーネル、線形カーネル、カーネル関数、回帰関数、線形モデル、回帰問題、判別問題)
アルゴリズム:Algorithms

保護中: 統計数学理論における判別適合的損失についての概要

統計数学理論における判別適合的損失についての概要(ランプ損失、凸マージン損失、非凸なΦ-マージン損失、判別適合的、ロバスト・サポートベクトルマシン、判別適合性定理、L2-サポートベクトルマシン、2乗ヒンジ損失、ロジスティック損失、ヒンジ損失、ブースティング、指数損失、凸マージン損失の判別適合性定理、ベイズ規則、予測Φ-損失、予測判別誤差、単調非増加凸関数、経験Φ-損失、経験判別誤差)
微分積分:Calculus

保護中: 統計数学理論における仮説集合の複雑度

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される統計数学理論における仮説集合の複雑度(ラデマッハ複雑度、VC次元、大数因子、一様大数の法則、決定株、線形判別器の集合、線形関数の集合、コーシー・シュワルツの不等式、イェンセンの不等式、マサールの補題、タラグランドの補題、経験ラデマッハ複雑度、サウアーの補題、ラドンの定理)
モバイルバージョンを終了
タイトルとURLをコピーしました