アルゴリズム:Algorithms 保護中: 機械学習における最適性条件とアルゴリズムの停止条件 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用される機械学習における最適性条件とアルゴリズムの停止条件(スケーリング、影響、機械イプシロン、アルゴリズム停止条件、反復法、凸最適解、制約付き最適化問題、大域最適解、局所最適解、凸関数、2次の十分条件、2次の必要条件、1次の必要条件) 2022.12.06 アルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: ガウス過程による教師なし学習(2)ガウス過程潜在変数モデルの拡張 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用であるガウス過程による教師なし学習としてのガウス過程潜在変数モデルの拡張(無限ワープ混合モデル、ガウス過程力学モデル、ポアソン点過程、対数ガウスCox過程、潜在ガウス過程、楕円スライスサンプリング) 2022.12.05 アルゴリズム:Algorithmsグラフ理論ベイズ推定微分積分:Calculus推論技術:inference Technology最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
python 保護中: モデルフリー強化学習のpythonによる実装(3)経験を価値評価、戦略どちらの更新に利用するか:ValueベースvsPolicyベース デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモデルフリー強化学習のpythonによる実装ValueベースとPolicyベース(経験を価値評価、戦略どちらの更新に利用するか、Deep Q-Network、深層強化学習、Off-policy Actor Critic、Q-Learning、SARSA、Actor Critic法、Multi-step Learning、TD法、Monte Carlo法、TD(λ)法、Epsilon-Greedy法) 2022.12.02 pythonアルゴリズム:Algorithms強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
Clojure 保護中: ClojureとHadoopを用いた確率的勾配降下法の実装 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureとHadoopを用いた確率的勾配降下法の実装(ミニバッチ、Mapper、Reducer、Parkour、Tesser、バッチ勾配降下、結合ステップ、パーティショニング、uberjar、Java、バッチ型勾配降下法、確率的勾配降下法、Hadoopクラスタ、Hadoop分散ファイルシステム、HDFS) 2022.12.01 ClojureLarge-Scaleデータ微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
Clojure マイクロサービスを含めたシステム運用監視の為のElasticStashの活用 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスを含めたシステム運用監視の為のElasticStashの活用(Riemann、ロールアップ、スロットル構造、KafKaプラグイン、UTC、timbre、LogStash、log4j、tools.logging、構造化ロギング、一般的なログフォーマット、可視化機能、ダッシュボード、Kibana、パイプライン、UDP、Collectd、RRD、stdin、stdout、ELK Stack、Elastic Stack、Apache Kafka 2022.11.28 Clojureアーキテクチャコンピューターセキュリティデータベース技術:DataBase Technologyマルチエージェントシステム
アルゴリズム:Algorithms 保護中: 正定値行列の情報幾何(2)ガウシアングラフィカルモデルから凸最適化へ デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何 ガウシアングラフィカルモデルから凸最適化へ(コーダルグラフ、三角化グラフ、双対座標、ピタゴラスの定理、情報幾何、測地線、標本分散共分散行列、最尤推定、ダイバージェンス、節空間、リーマン計量、多変量ガウス分布、カルバック・ライブラー情報量、双対接続、ユークリッド幾何、狭義凸関数、自由エネルギー) 2022.11.26 アルゴリズム:Algorithmsグラフ理論幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra集合論:Set theory
アルゴリズム:Algorithms 保護中: 確率的バンディッド問題の方策 -理論的限界とε-貪欲法 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の方策 としての理論的限界とε-貪欲法、UCB法、一貫性をもつ方策のリグレット下界、KLダイバージェンス 2022.11.25 アルゴリズム:Algorithmsバンディッド問題強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
微分積分:Calculus 保護中: 統計数学理論における仮説集合の複雑度 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される統計数学理論における仮説集合の複雑度(ラデマッハ複雑度、VC次元、大数因子、一様大数の法則、決定株、線形判別器の集合、線形関数の集合、コーシー・シュワルツの不等式、イェンセンの不等式、マサールの補題、タラグランドの補題、経験ラデマッハ複雑度、サウアーの補題、ラドンの定理) 2022.11.24 微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: 確率的最適化とオンライン最適化の概要 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに用いられる確率的最適化とオンライン最適化の概要(期待誤差、リグレット、ミニマックス最適、強凸損失関数、確率的勾配降下法、確率的双対平均化法、AdaGrad、オンライン型確率的最適化、バッチ型確率的最適化) 2022.11.23 アルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms 保護中: 機械学習における連続最適化のための制約なし最適化 デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習における連続最適化のための制約なし最適化(機械イプシロン、スケーリングを考慮しない停止条件、スケーリングを考慮した停止条件、テイラーの定理、最適化アルゴリズムの停止条件、ヘッセ行列) 2022.11.22 アルゴリズム:Algorithms微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra集合論:Set theory