人工知能

アルゴリズム:Algorithms

保護中: 確率的最適化とオンライン最適化の概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに用いられる確率的最適化とオンライン最適化の概要(期待誤差、リグレット、ミニマックス最適、強凸損失関数、確率的勾配降下法、確率的双対平均化法、AdaGrad、オンライン型確率的最適化、バッチ型確率的最適化)
アルゴリズム:Algorithms

保護中: 機械学習における連続最適化のための制約なし最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習における連続最適化のための制約なし最適化(機械イプシロン、スケーリングを考慮しない停止条件、スケーリングを考慮した停止条件、テイラーの定理、最適化アルゴリズムの停止条件、ヘッセ行列)
アルゴリズム:Algorithms

保護中: ガウス過程による教師なし学習(1)ガウス過程潜在変数モデルの概要とアルゴリズム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)に活用される確率的生成モデルの応用であるガウス過程潜在変数モデル(GPLVM)を用いた教師なし学習の概要とアルゴリズム、ベイズガウス過程潜在変数モデル(Bayesian GPLVM)
アーキテクチャ

ApacheサーバーとLAMPのインストールと動作

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクで活用されるApacheサーバーとLAMPのインストールと動作(MariaDB、PHP、CentOS、Mac、Windows)
アルゴリズム:Algorithms

保護中: モデルフリー強化学習のpythonによる実装(2) モンテカルロ法とTD法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるモンテカルロ法とTD法等のモデルフリー強化学習のpythonによる実装(Q-Learning、Valueベースの手法、Monte Carlo法、ニューラルネット、Epsilon-Greedy法、TD(λ)法、Muli-step Learning、Rainbow、A3C/A2C、DDPG、APE-X DQN)
Clojure

保護中: Hadoopに用いられる分散計算処理(map-reduce)のClojureによる実装

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるHadoopに用いられる分散計算処理(map-reduce)のClojureによる実装(Tesser、Reducer関数、fold、コスト関数、勾配降下法、特徴抽出、feature-scales 関数、特徴量のスケーリング、勾配降下学習率、勾配降下法更新ルール、反復アルゴリズム、重回帰、相関行列、fuse、可換性、線形回帰、共分散、Hadoop、pararrel fold)
Clojure

マイクロサービスでのセキュリティ- ClojureでのAuthとPedestalを使ったAPI

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるマイクロサービスでのセキュリティ- ClojureでのAuthとPedestalを使ったAPI(Buddy、BUddy sign、JSON Web Tokens、JSON Web Signature、JSON Web Encryption)
IOT技術:IOT Technology

保護中: 分散データ処理を可能とするApache Sparkの処理モデル

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される分散データ処理を可能とするApache Sparkの処理モデル(エグゼキュータ、タスク、スケジューラー、ドライバプログラム、マスターノード、ワーカーノード、Spark Standalone、Mesos、Hadoop、HFDS、YARN、パーティション、RDD、変換、アクション、Resillient Distributed Dataset)
グラフ理論

保護中: 正定値行列の情報幾何(1)双対的な幾何構造の導入

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される正定値行列の情報幾何としての双対的な幾何構造の導入(リーマン計量、接ベクトル空間、半正定値計画問題、自己平衡性、レビ-チビタ接続、リーマン幾何、測地線、ユークリッド幾何、∇-測地線、接ベクトル、テンソル量、双対平坦性、正定値行列集合)
バンディッド問題

保護中: 確率的バンディッド問題の基礎

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の基礎(大偏差原理とベルヌーイ分布での例、チェルノフ・へフディングの不等式、サノフの定理、へフディングの不等式、カルバックライブラー・ダイバージェンス、確率質量関数、裾確率、中心極限定理による確率近似)
モバイルバージョンを終了
タイトルとURLをコピーしました