デジタルトランスフォーメーション

Clojure

SublimeText4とVS code、LightTableでのClojureの開発環境立ち上げ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojure言語のSublimetextおよびVS codeでの開発環境立ち上げについて
アルゴリズム:Algorithms

保護中: 弱ラベル学習のためのサポートベクトルマシン(1)半教師あり学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるサポートベクトルマシンの応用としての弱ラベル学習(訓練事例の一部だけにラベル情報が与えられている半教師あり学習)
アルゴリズム:Algorithms

保護中: 変分ベイズアルゴリズムの行列分解モデルへの適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの計算手法としての行列分解モデルの変分ベイズ学習と経験変分ベイズ学習のアルゴリズム
アルゴリズム:Algorithms

保護中: ノンパトメトリックベイズとクラスタリング(2)分割の確率モデルとディリクレ過程

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用の一つであるノンパラメトリックベイズを用いたクラスタリング(中華料理店過程とディリクレ過程と集中度パラメータの推定、棒折り過程)
アルゴリズム:Algorithms

確率的生成モデルとガウス過程(1)確率モデルの基礎

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための確率的生成モデルとガウス過程を理解するための確率モデルの基礎(独立性、条件付き独立性、同時確率、周辺化とグラフィカルモデル)
アルゴリズム:Algorithms

確率的最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される大量データの大規模学習問題を解くための確率的最適化の諸手法(教師あり学習と正則化,凸解析の基本事項,確率的最適化とは,オンライン型確率的最適化,バッチ型確率的最適化,分散環境での確率的最適化)
web技術:web technology

Webやドキュメントからの表形式データの抽出と意味注釈(SemTab)学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるデータ抽出タスクの一つであるWebやドキュメントからの表形式データの抽出と意味注釈学習についてISWCのワークショップ(SemTab)を中心に述べる
アルゴリズム:Algorithms

統計的学習理論

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習アルゴリズムの統計的性質に関する理論(一様大数の法則、普遍カーネル、判別適合損失)
IOT技術:IOT Technology

WoT(Web of Things)技術について

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるIoT技術の拡張技術であるWoT(Web of Things)の概要と課題
アルゴリズム:Algorithms

保護中: ガウス過程雑記 – 関数の雲の利点と回帰モデルとカーネル法そして物理的モデルとの関係

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的生成モデルの応用としてのガウス過程雑記 関数の雲の利点と回帰モデルとカーネル法そして物理的モデルとの関係
モバイルバージョンを終了
タイトルとURLをコピーしました