概要

セマンテックウェブ技術:Semantic web Technology

ISWC2006論文集より

ISWC2006、国際的なセマンティックウェブ会議の論文集の概要
微分積分:Calculus

保護中: トピックモデルの拡張(トピックに構造を入れる)相関トピックモデル、階層構造を入れたパチンコ分配モデル、低次元空間構造を入れた確率的潜在意味可視化

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクに活用されるトピックモデルで相関があるトピックに構造を入れたトピックモデルの概要(相関トピックモデル、階層構造を入れたパチンコ分配モデル、低次元空間構造を入れた確率的潜在意味可視化)
推論技術:inference Technology

保護中: トピックモデルの拡張(他の情報も活用する)(1) 結合トピックモデルと対応トピックモデル

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクに活用される補助情報を加えたトピックモデルを作る結合/対応トピックモデル概要
LISP

知識情報処理技術

人工知能タスクの中で最も重要な知識情報を扱うための技術概要
微分積分:Calculus

保護中: 疎構造学習による異常検知- 変数同士の依存関係の崩れを異常と結びつけるグラフモデルと正則化

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクに用いる変数同士の依存関係の崩れを異常と結びつけるグラフモデルと正則化の手法の概要(グラフィカルラッソ)
アルゴリズム:Algorithms

チューリングの計算理論概要と参考図書とニューラルチューリングマシン

人工知能技術(AI)のベースとなるコンピューターの基本理論であるチューリング計算理論入門概要
微分積分:Calculus

保護中: 混合分布モデルによる逐次更新型異常検知-イエンセンの不等式とEM法

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクに活用される最もポピュラーな手法である混合分布モデルによる逐次更新型異常検知の概要(イエンセンの不等式、EM法)
異常検知・変化検知

保護中: 単純ベイズ法による異常検知 -二値分類との相違

デジタルトランスフォーメーション(DX)、人工知能(AI)タスクのための多変数の異常検知/変化検知のための単純ベイズ法の概要
地理空間情報処理

機械学習プロフェッショナルシリーズ-関係データ学習  読後メモ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに用いられる情報の裏側にある意味や知識を抽出するための関係データ学習の概要
C言語

保護中: マルコフ連鎖モンテカルロ法の応用例(ベイズ推定)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推定へのMCMC法の適用概要と各種アルゴリズムの解説
モバイルバージョンを終了
タイトルとURLをコピーしました