機械学習

Uncategorized

保護中: 説明できる人工知能(15)モデル非依存の解釈(シャープレイ値(sharpley value))

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される説明できる人工知能としてのシャープレイ値を用いたモデル非依存解釈(breakDown、fastshap、R言語、対称性の公理、LIME、SHAP、スパースな説明、効率性、対称性、ダミー、加法性の原理、シャープレイ値、協力ゲーム理論)
アルゴリズム:Algorithms

保護中: 強化学習のPolicy Gradient手法の改善であるTRPO/PPOとDPG/DDPG

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される強化学習のPolicy Gradient手法の改善であるTRPO/PPOとDPG/DDPG(Pendulum、Actor Critic、SequentialMemory、Adam、keras-rl、TD誤差、Deep Deterministic Policy Gradient、Deterministic Policy Gradient、Advanced Actor Critic、A2C、A3C、Proximal Policy Optimization、Trust Region Policy Optimization、Python)
Clojure

保護中: Clojureでのk-meansを使ったテキスト文書間の類似性の尺度を使った推薦システム

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるClojureでのk-meansを使ったテキスト文書間の類似性の尺度を使った推薦システム(Slope One推薦、トップ・レーティング計算、加重評価、ペアアイテムの平均差、Weighted Slope One、ユーザーベース推薦、協調フィルタリング、アイテムベース推薦、映画推薦データ)
ICT技術:ICT Technology

Dockerの活用 Docker導入前の準備

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるDockerの活用 Docker導入前の準備(Docker Desktop、Docker CE、Docker EE、kubernetes、Swarm、CoreOS、Atomic Host、RancherOS、Snappy Ubuntu Core)
ICT技術:ICT Technology

半導体の設計プロセスへのAIの適用およびAIアプリケーション用半導体チップについて

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される半導体の設計とAIおよびAI用チップについて(エッジコンピューティング、Qualcomm Snapdragon Neural Processing Engine、Intel Nervana Neural Network Processor、Google TPU、NVIDIA Tesla GPU、自己学習、予測分析、パターンマッチング、最適化、異常検知、変化検知、深層学習)
アルゴリズム:Algorithms

保護中: スパース学習モデルのための L1ノルム正則化のための最適化手法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用するためのスパース学習モデルのための L1ノルム正則化のための最適化手法(近接勾配法、forward-backward splitting、iterative-shrinkage threshholding(IST)、加速付き近接勾配法、アルゴリズム、prox作用素、正則化項、微分可能、二乗誤差関数、ロジスティック損失関数、繰り返し重み付き縮小法、凸共役、へシアン行列、最大固有値、2階微分可能、ソフト閾値関数、L1ノルム、L2ノルム、リッジ正則化項、η-トリック)
アルゴリズム:Algorithms

保護中: バンディット問題における最適腕識別とA/Bテスト(2)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバンディット問題における最適腕識別とA/Bテスト(逐次削除方策、誤認識率、固定信頼度、固定予算、LUCB方策、UCB方策、最適腕、スコアに基づく方法、LCB、アルゴリズム、累積報酬最大化、最適腕識別の方策、ε-最適腕識別)
アルゴリズム:Algorithms

保護中: 統計数学理論によるブースティング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるブースティング(一般化線型モデル、修正ニュートン法、対数尤度、重み付き最小2乗法、ブースティング、座標降下法、反復重み付け最小2乗法、iteratively reweighted least square method、IRLS method、重み付き経験判別誤差、パラメータ更新則、へシアン行列、補正ニュートン法、modified Newton method、ニュートン法、Newton method、リンク関数、ロジスティック損失、logistic loss、ブースティング・アルゴリズム、ロジットブースト、指数損失、凸マージン損失、アダブースト、弱仮説、経験マージン損失、非線形最適化)
アルゴリズム:Algorithms

保護中: 機械学習の連続最適化としての準ニュートン法(2)記憶制限付き準ニュートン法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習の連続最適化としての記憶制限付き準ニュートン法(疎クリーク分解、sparse clique factorization、コーダルグラフ、疎性、セカント条件、疎ヘッセ行列、DFP公式、BFGS公式、KLダイバージェンス、準ニュートン法、極大クリーク、正定値行列、正定値行列補完、positive define matrix composition、グラフの三角化、完全部分グラフ、クリーク、ヘッセ行列、3重対角行列、Hestenes-Stiefel法、L-BFGS法)
アルゴリズム:Algorithms

保護中: ベイズ推論による機械学習の例:ポアソン混合モデルの崩壊型ギブスサンプリングによる推論

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるベイズ推論による機械学習の例としてのポアソン混合モデルの崩壊型ギブスサンプリングによる推論(変分推論、ギブスサンプリング、人工データでの評価、アルゴリズム、事前分布、ガンマ分布、ベイズの定理、ディリクレ分布、カテゴリ分布、グラフィカルモデル)
モバイルバージョンを終了
タイトルとURLをコピーしました