ヒンジ損失

アルゴリズム:Algorithms

保護中: 統計数学理論による多値判別の判別適合的損失と各種損失関数への適用

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論による多値判別の判別適合的損失と各種損失関数への適用(識別モデル損失、判別適合的、狭義順序保存特性、ロジスティックモデル、最尤推定、非負値凸関数、1対他損失、制約付き比較損失、凸非負値関数、ヒンジ損失、ペア比較損失、多値サーポートベクトルマシン、単調非増加関数、予測判別誤差、予測ψ-損失、可測関数)
アルゴリズム:Algorithms

保護中: 統計数学理論によるC-サポートベクトルマシンの概要

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるサポートベクトルマシン C-サポートベクトルマシン(サポートベクトル比、マルコフの不等式、確率不等式、予測判別誤差、1つ抜き交差確認法、LOOCV、判別器、相補性条件、主問題、双対問題、最適解、1次凸最適化問題、判別境界、判別関数、ラグランジュ関数、極限条件、スレイター制約想定、ミニマックス定理、グラム行列、ヒンジ損失、マージン損失、凸関数、ベイズ誤差、正則化パラメータ)
アルゴリズム:Algorithms

保護中: 統計数学理論における判別適合的損失についての概要

統計数学理論における判別適合的損失についての概要(ランプ損失、凸マージン損失、非凸なΦ-マージン損失、判別適合的、ロバスト・サポートベクトルマシン、判別適合性定理、L2-サポートベクトルマシン、2乗ヒンジ損失、ロジスティック損失、ヒンジ損失、ブースティング、指数損失、凸マージン損失の判別適合性定理、ベイズ規則、予測Φ-損失、予測判別誤差、単調非増加凸関数、経験Φ-損失、経験判別誤差)
モバイルバージョンを終了
タイトルとURLをコピーしました