ロジスティック損失

アルゴリズム:Algorithms

保護中: 統計数学理論によるブースティング

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論によるブースティング(一般化線型モデル、修正ニュートン法、対数尤度、重み付き最小2乗法、ブースティング、座標降下法、反復重み付け最小2乗法、iteratively reweighted least square method、IRLS method、重み付き経験判別誤差、パラメータ更新則、へシアン行列、補正ニュートン法、modified Newton method、ニュートン法、Newton method、リンク関数、ロジスティック損失、logistic loss、ブースティング・アルゴリズム、ロジットブースト、指数損失、凸マージン損失、アダブースト、弱仮説、経験マージン損失、非線形最適化)
アルゴリズム:Algorithms

保護中: バッチ型確率的最適化 – 確率的双対座標降下法

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるバッチ型確率的最適化としての確率的双対座標降下法のアルゴリズム(ネステロフの可測法、SDCA、ミニバッチ、計算時間、バッチ近接勾配法、最適解、作用素ノルム、最大固有値、フェンシェルの双対定理、主問題、双対問題、近接写像、平滑化ヒンジ損失、オンライン型確率的最適化、エラスティックネット正則化、リッジ正則化、ロジスティック損失、ブロック座標降下法、バッチ型確率的最適化)
アルゴリズム:Algorithms

保護中: 統計数学理論における判別適合的損失についての概要

統計数学理論における判別適合的損失についての概要(ランプ損失、凸マージン損失、非凸なΦ-マージン損失、判別適合的、ロバスト・サポートベクトルマシン、判別適合性定理、L2-サポートベクトルマシン、2乗ヒンジ損失、ロジスティック損失、ヒンジ損失、ブースティング、指数損失、凸マージン損失の判別適合性定理、ベイズ規則、予測Φ-損失、予測判別誤差、単調非増加凸関数、経験Φ-損失、経験判別誤差)
モバイルバージョンを終了
タイトルとURLをコピーしました