制約なし最適化問題

アルゴリズム:Algorithms

保護中: アトミックノルムによるスパース機械学習の定義と具体例

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアトミックノルムによるスパース機械学習での定義と具体例(テンソルの核型ノルム、nuclear norm、高階テンソル、トレースノルム、K階テンソル、アトム集合、汚いモデル、dirty model、マルチタスク学習、制約なし最適化問題、ロバスト主成分分析、L1ノルム、グループL1ノルム、L1誤差項、ロバスト統計、フロベニウスノルム、外れ値推定、重複のあるグループ正則化、アトム集合の和集合、ベクトルの要素単位のスパース性、グループ単位のスパース性、行列の低ランク性)
アルゴリズム:Algorithms

保護中: 機械学習における主問題に対する最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習タスクに活用される機械学習における主問題に対する最適化(バリア関数法、ペナルティ関数法、大域的最適解、ヘッセ行列の固有値、実行可能領域、制約なし最適化問題、直線探索、最適性条件のラグランジュ乗数、集積点、有効制約法)
モバイルバージョンを終了
タイトルとURLをコピーしました