制限強凸性

アルゴリズム:Algorithms

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(2)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(数値解析例、ヒートマップ、人工データ、制限強凸性、制限等長性、kスパースベクトル、ノルムの独立性、劣微分、凸関数、回帰係数ベクトル、直交補空間)
モバイルバージョンを終了
タイトルとURLをコピーしました