双対ノルム

アルゴリズム:Algorithms

保護中: アトミックノルムによるスパース機械学習の数学的性質と最適化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアトミックノルムによるスパース機械学習の数学的性質と最適化(L∞ノルム、双対問題、ロバスト主成分分析、前景画像抽出、低ランク行列、スパース行列、ラグランジュ乗数、補助変数、拡張ラグランジュ関数、指示関数、スペクトルノルム、ロバスト主成分分析、フランク・ウォルフェ法、双対における交互乗数法、L1ノルム制約付き二乗回帰問題、正則化パラメータ、経験誤差、曲率パラメータ、アトミックノルム、prox作用素、凸包、ノルムの等価性、双対ノルム)
アルゴリズム:Algorithms

保護中: 重複型スパース正則化によるスパース機械学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される重複型スパース正則化によるスパース機械学習(主問題、双対問題、相対双対ギャップ、双対ノルム、モーローの定理、拡張ラグランジュ法、交互乗数法、停止条件、重複ありグループL1ノルム、拡張ラグランジュ関数、prox作用素、ラグランジュ乗数ベクトル、線形制約、交互方向乗数法、制約付き最小化問題、テンソルの多重線形ランク、凸緩和、重複型トレースノルム、置換行列、正則化法、補助変数、エラスティックネット正則化、罰則項、タッカー分解、高階特異値分解、因子行列分解、特異値分解、ウェーブレット変換、全変動、雑音除、圧縮センシング、異方的全変動、テンソル分解、エラスティックネット)
アルゴリズム:Algorithms

保護中: グループL1ノルム正則化に基づくスパース学習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるグループL1ノルム正則化に基づくスパース機械学習(相対双対ギャップ、双対問題、勾配降下、拡張ラグランジュ関数、双対拡張ラグランジュ法、ヘシアン、L1ノルム正則化、グループL1ノルム正則化、双対ノルム、経験誤差最小化問題、prox作用素、Nesterovの加速法、近接勾配法、繰り返し重み付き縮小法、変分表現、非ゼログループ数、カーネル重み付き正則化項、凹共役、再生核ヒルベルト空間、サポートベクトルマシン、カーネル重み、マルチカーネル学習、基底カーネル関数、EEG信号、MEG信号、ボクセル、電気双極子、ニューロン、マルチタスク学習)
スパースモデリング

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(1)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(マルコフの不等式、ヘフディングの不等式、ベルシュタインの不等式、カイ二乗分布、裾確率、ユニオンバウンド、ブールの不等式、L∞ノルム、多次元ガウススペクトル、ノルムの互換性、正規分布、スパースベクトル、双対ノルム、コーシー・シュワルツの不等式、ヘルダーの不等式、回帰係数ベクトル、閾値、kスパース、正則化パラメータ、劣ガウス雑音)
モバイルバージョンを終了
タイトルとURLをコピーしました