回帰係数ベクトル

アルゴリズム:Algorithms

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(2)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(数値解析例、ヒートマップ、人工データ、制限強凸性、制限等長性、kスパースベクトル、ノルムの独立性、劣微分、凸関数、回帰係数ベクトル、直交補空間)
スパースモデリング

保護中: スパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(1)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるスパース性に基づく機械学習としてのノイズありL1ノルム最小化の理論(マルコフの不等式、ヘフディングの不等式、ベルシュタインの不等式、カイ二乗分布、裾確率、ユニオンバウンド、ブールの不等式、L∞ノルム、多次元ガウススペクトル、ノルムの互換性、正規分布、スパースベクトル、双対ノルム、コーシー・シュワルツの不等式、ヘルダーの不等式、回帰係数ベクトル、閾値、kスパース、正則化パラメータ、劣ガウス雑音)
モバイルバージョンを終了
タイトルとURLをコピーしました