基礎

アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての表現定理とラデマッハ複雑度(グラム行列、仮説集合、判別境界、過剰適合、マージン損失、判別関数、予測半正定値、普遍カーネル、再生核ヒルベルト空間、予測判別誤差、L1ノルム、ガウスカーネル、指数カーネル、2項カーネル、コンパクト集合、経験ラデマッハ複雑度、ラデマッハ複雑度、表現定理)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としての再生核ヒルベルト空間

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としての再生核ヒルベルト空間(正規直交基底、ヒルベルト空間、ガウシアンカーネル、連続関数、カーネル関数、完備化空間、内積空間、同値類、同値関係、コーシー列、線型空間、ノルム、内積の完備化)
アルゴリズム:Algorithms

保護中: 統計数学理論におけるカーネル法の基礎としてのカーネル関数

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される統計数学理論におけるカーネル法の基礎としてのカーネル関数(ガウシアンカーネル、多項式カーネル、線形カーネル、カーネル関数、回帰関数、線形モデル、回帰問題、判別問題)
アルゴリズム:Algorithms

保護中: 勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法)

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される勾配法の基礎(直線探索法、座標降下法、最急降下法と誤差逆伝搬法、確率的最適化、多層パーセプトロン、アダブースト、ブースティング、ウルフ条件、ゾーテンダイク条件、アルミホ条件、バックトラッキング法、ゴールドシュタイン条件、強ウルフ条件)
アルゴリズム:Algorithms

アンサンブル法による機械学習 -基礎とアルゴリズム 読書メモ

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用されるアンサンブル法による機械学習での基礎とアルゴリズム(クラス不均衡学習、コスト考慮型学習、アクティプラーニング、半教師あり学習、類似性に基づく手法、クラスタリングアンサンブル法、グラフに基づく手法、祭ラベルに基づく手法、変換に基づく手法、クラスタリング、最適化に基づく枝刈り、アンサンブル枝刈り、結合法、バギング、ブースティング)
バンディッド問題

保護中: 確率的バンディッド問題の基礎

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される確率的バンディッド問題の基礎(大偏差原理とベルヌーイ分布での例、チェルノフ・へフディングの不等式、サノフの定理、へフディングの不等式、カルバックライブラー・ダイバージェンス、確率質量関数、裾確率、中心極限定理による確率近似)
微分積分:Calculus

保護中: 機械学習における連続最適化の基本事項としての凸解析の基礎

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される連続最適化の基本事項としての凸解析の基礎(劣勾配、劣微分、共役関数、閉真凸関数、共役関数、強凸関数、閉真凸関数、関数値の上下界、ヘッセ行列、エピグラフ、テイラーの定理、相対的内部、アフイン包、連続性、凸包、凸関数、凸集合)
アルゴリズム:Algorithms

保護中: 教師あり学習と正則化

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクに活用される機械学習最適化手法の基礎としての教師あり学習(回帰、判別)と正則化(リッジ関数、L1正則化、ブリッジ正則化、エラステックネット正則化、SCAD、グループ正則化、一般化連結正則化、トレースノルム正則化)の概要
アルゴリズム:Algorithms

連続最適化の基本事項 – 微積分・線形代数の基礎

連続最適化の基本事項 - 微積分・線形代数の基礎(テイラーの定理、ヘッセ行列、ランダウの記号、リプシッツ連続、リプシッツ定数、陰関数定理、ヤコビ行列、対角行列、固有値、非負定値行列、正定値行列、部分空間、射影、1ランク更新、自然勾配法、準ニュートン法、シャーマン・モリソンの公式、ノルム、ユークリッドノルム、p-ノルム、シュワルツの不等式、ヘルダーの不等式、行列空間上の関数)
アルゴリズム:Algorithms

保護中: ノンパラメトリックベイズの理論の為の測度論の基礎

ノンパラメトリックベイズの理論の為の測度論の基礎(ランダム測度の独立性、ラプラス汎関数における単調収束定理、確率1で成り立つ命題、確率分布のラプラス変換、確率分布による期待値計算、確率分布、単調収束定理、単関数による近似定理、単関数、ボレル集合族を用いた可測関数、ボレル集合、σ-有限測度、σ-加法族、ルーベグ測度、ルーベク積分)
モバイルバージョンを終了
タイトルとURLをコピーしました