p-ノルム

アルゴリズム:Algorithms

連続最適化の基本事項 – 微積分・線形代数の基礎

連続最適化の基本事項 - 微積分・線形代数の基礎(テイラーの定理、ヘッセ行列、ランダウの記号、リプシッツ連続、リプシッツ定数、陰関数定理、ヤコビ行列、対角行列、固有値、非負定値行列、正定値行列、部分空間、射影、1ランク更新、自然勾配法、準ニュートン法、シャーマン・モリソンの公式、ノルム、ユークリッドノルム、p-ノルム、シュワルツの不等式、ヘルダーの不等式、行列空間上の関数)
IOT技術:IOT Technology

保護中: 劣モジュラ最適化を用いた構造正則化学習(1)正則化とp-ノルムの復習

デジタルトランスフォーメーション(DX)、人工知能(AI)、機械学習(ML)タスクのための離散情報の最適化手法である劣モジュラ最適化を用いた構造正則化学習を考えるための、スパースモデリング、正則化とp-ノルムの復習
モバイルバージョンを終了
タイトルとURLをコピーしました