IOT技術:IOT Technology Weather Forecasting and Data Science Weather forecasting and data assimilation for simulation and data science integration for digital transformation, artificial intelligence, and machine learning task utilization 2022.06.01 IOT技術:IOT TechnologyStream Data Processingアルゴリズム:Algorithmsシミュレーションスパースモデリングデータベース技術:DataBase Technologyベイズ推定強化学習微分積分:Calculus推論技術:inference Technology時系列データ解析最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
アルゴリズム:Algorithms Protected: Structural Regularization Learning with Submodular Optimization (3)Formulation of the structural regularization problem with submodular optimization Application of submodular function optimization, an optimization method for discrete information, to structural regularization problems and formulations using submodular optimization (linear approximation and steepest effect methods, accelerated proximity gradient method, FISTA, parametric submodular minimization, and splitting algorithms) 2022.05.12 アルゴリズム:Algorithmsグラフ理論スパースモデリング微分積分:Calculus推論技術:inference Technology数理論理学最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics関係データ学習
アルゴリズム:Algorithms Protected: Maximum Flow and Graph Cutting (2)Maximum Flow Algorithm Ford-Fulkerson's algorithm and Goldberg-Tarjan's algorithm for the maximum flow problem for directed graphs used in digital transformation, artificial intelligence, and machine learning tasks, pre-flow and push methods, increasing path algorithms, and residual networks 2022.04.29 アルゴリズム:Algorithmsグラフ理論スパースモデリング微分積分:Calculus推論技術:inference Technology数理論理学:Mathematical logic最適化:Optimization機械学習:Machine Learning関係データ学習
Symbolic Logic Protected: Maximum flow and graph cut (1) Maximum volume and minimum s-t cut Application of undermodular optimization, an optimization method for discrete information used in digital transformation, artificial intelligence, and machine learning tasks, to minimum cut and maximum flow problems for directed graphs 2022.04.28 Symbolic Logicグラフ理論スパースモデリング幾何学:Geometry推論技術:inference Technology数理論理学最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics関係データ学習
Symbolic Logic Protected: Maximization of submodular functions and application of the greedy method (2) Sensor placement problem and active learning problem Application of submodular function maximization and greedy methods to sensor placement and active learning problems in submodular optimization, a method of optimization of discrete information used in digital transformation, artificial intelligence, and machine learning tasks. 2022.04.27 Symbolic Logicグラフ理論スパースモデリング幾何学:Geometry推論技術:inference Technology数理論理学最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics関係データ学習
アルゴリズム:Algorithms Protected: Fundamentals of Submodular Optimization (5) Lovász Extension and Multiple Linear Extension Interpretation of submodularity using Lovász extensions and multiple linear extensions as a basis for submodular optimization, an approach to discrete information used in digital transformation, artificial intelligence, and machine learning tasks 2022.04.21 アルゴリズム:Algorithmsグラフ理論スパースモデリング微分積分:Calculus推論技術:inference Technology数理論理学:Mathematical logic最適化:Optimization機械学習:Machine Learning
スパースモデリング Protected: Sparse Modeling and Multivariate Analysis (11) Practical Examples of SVD, PMD, and NMF with R Sparse Machine Learning, Matrix Decomposition (SVD, PMD, NMF) with R for Digital Transformation (DX), Artificial Intelligence (AI), Solid Line, BiocManager, PMA 2021.09.05 スパースモデリング機械学習:Machine Learning
スパースモデリング Protected: Sparse Modeling and Multivariate Analysis (10) Use of matrix data decomposition Machine learning for use in digital transformation (DX) and artificial intelligence (AI), application of matrix data analysis to sparse machine learning, SVD, PMD, NMF, LSA, LSI, PCA, LDA 2021.09.04 スパースモデリング機械学習:Machine Learning
スパースモデリング Protected: Sparse Modeling and Multivariate Analysis (9) Basics of Matrix Data Decomposition Machine learning techniques that can be used for digital transformation (DX) and artificial intelligence (AI), fundamentals of applying matrix data to machine learning, singularity decomposition, low-rank matrix approximation 2021.09.03 スパースモデリング機械学習:Machine Learning
スパースモデリング Protected: Sparse Modeling and Multivariate Analysis (8) Sparsity of Time Transitions Application of machine learning techniques and sparse modeling to time-varying information (changes in customers' purchasing interests) 2021.09.02 スパースモデリング機械学習:Machine Learning