グラフ理論

Clojure

Protected: Network analysis with Pagerank using Clojure Glittering

Network analysis with Pagerank (label propagation, Twitter user group analysis, influencers, communities, community graphs, accounts, followers, dumping factor, page rank algorithm) using Clojure Glittering for digital transformation, artificial intelligence and machine learning tasks.
アルゴリズム:Algorithms

Protected: Distributed processing of on-line stochastic optimization

Distributed online stochastic optimization for digital transformation, artificial intelligence, and machine learning tasks (expected error, step size, epoch, strongly convex expected error, SGD, Lipschitz continuous, gamma-smooth, alpha-strongly convex, Hogwild!), parallelization, label propagation method, propagation on graphs, sparse feature vectors, asynchronous distributed SGD, mini-batch methods, stochastic optimization methods, variance of gradients, unbiased estimators, SVRG, mini-batch parallelization of gradient methods, Nesterov's acceleration method, parallelized SGD)
アルゴリズム:Algorithms

Theory and algorithms of various reinforcement learning techniques and their implementation in python

Theory and algorithms of various reinforcement learning techniques used for digital transformation, artificial intelligence, and machine learning tasks and their implementation in python reinforcement learning,online learning,online prediction,deep learning,python,algorithm,theory,implementation
python

Protected: Applying Neural Networks to Reinforcement Learning Deep Q-Network Applying Deep Learning to Value Assessment

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Deep Q-Network Prioritized Replay, Multi-step applying deep learning to value assessment Deep Q-Network applying deep learning to value assessment (Prioritized Replay, Multi-step Learning, Distibutional RL, Noisy Nets, Double DQN, Dueling Network, Rainbow, GPU, Epsilon-Greedy method, Optimizer, Reward Clipping, Fixed Target Q-Network, Experience Replay, Average Experience Replay, Mean Square Error, Mean Squared Error, TD Error, PyGame Learning Enviroment, PLE, OpenAI Gym, CNN
Clojure

Protected: Network analysis in GraphX Pregel using Clojure

Network analysis in GraphX Pregel using Clojure for digital transformation, artificial intelligence, and machine learning tasks (label propagation, twitter data, community analysis, graph structure analysis, community size, community detection, algorithms, maximum connected components, triangle counting, glittering, Google, Koenigsberg bridge, Euler path)
アルゴリズム:Algorithms

Protected: An example of machine learning by Bayesian inference: inference by Gibbs sampling of a Poisson mixture model

Examples of machine learning with Bayesian inference utilized for digital transformation, artificial intelligence, and machine learning tasks: inference by Gibbs sampling of Poisson mixed models (algorithm, sampling of unobserved variables, Dirichlet distribution, gamma distribution, conditional distribution, categorical distribution, posterior distribution, simultaneous distribution, superparameter, knowledge model, latent variable) categorical distribution, posterior distribution, simultaneous distribution, hyperparameters, knowledge models, data generating processes, latent variables)
アルゴリズム:Algorithms

Protected: Representation Theorems and Rademacher Complexity as the Basis for Kernel Methods in Statistical Mathematics Theory

Representation theorems and Rademacher complexity as a basis for kernel methods in statistical mathematics theory used in digital transformation, artificial intelligence, and machine learning tasks Gram matrices, hypothesis sets, discriminant bounds, overfitting, margin loss, discriminant functions, predictive semidefiniteness, universal kernels, the reproducing kernel Hilbert space, prediction discriminant error, L1 norm, Gaussian kernel, exponential kernel, binomial kernel, compact sets, empirical Rademacher complexity, Rademacher complexity, representation theorem
アルゴリズム:Algorithms

Protected: Approximate computation of various models in machine learning by Bayesian inference

Approximate computation of various models in machine learning using Bayesian inference for digital transformation, artificial intelligence, and machine learning tasks (structured variational inference, variational inference algorithms, mixture models, conjugate prior, KL divergence, ELBO, evidence lower bound, collapsed Gibbs sampling, blocking Gibbs sampling, approximate inference)
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning Value Function Approximation, which implements value evaluation as a function with parameters.

Application of Neural Networks to Reinforcement Learning used for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Examples of implementing value evaluation with functions with parameters (CartPole, Q-table, TD error, parameter update, Q-Learning, MLPRegressor, Python)
Clojure

Protected: Network Analysis Using Clojure (2)Computing Triangles in a Graph Using Glittering

Network analysis using triangle computation in graphs using Clojure/Glittering for digital transformation, artificial intelligence, and machine learning tasks (GraphX, Pregel API, Twitter dataset, custom triangle count algorithm, message send function, message merge function, outer join, RDD, vertex attributes, Apache Spark, Sparkling, MLlib, Glittering, triangle counting, edge-cut strategy, random-vertex-cut strategy, and social networks, graph parallel computing functions, Hadoop, data parallel systems, RDG, Resilient Distributed Graph, Hama, Giraph)
タイトルとURLをコピーしました