グラフ理論

アルゴリズム:Algorithms

Protected: Calculation of Gaussian processes (1) Calculation by the auxiliary variable method

Approximate computation of Gaussian process models, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks, using the partial data method and the auxiliary variable method
Symbolic Logic

Modeling that combines probability and logic (2) PLL (Probabilistic Logical Learning)

Fusion modeling of probability and logic Probabilistic Logical Learning, ILP, PRISM used for digital transformation, artificial intelligence, and machine learning tasks.
アルゴリズム:Algorithms

Protected: Replica Exchange Monte Carlo and Multicanonical Methods

On replica exchange Monte Carlo and multi-canonical methods, which are algorithms to avoid falling into local solutions in Markov chain Monte Carlo methods used for digital transformation, artificial intelligence, and machine learning tasks.
アルゴリズム:Algorithms

Protected: Specific examples of graphical models

Computation of specific graphical models such as Boltzmann Machines, Mean Field Approximation, Bethe Approximation, Hidden Markov Models, Bayesian Hidden Markov Models, etc. as probabilistic generative models utilized in digital transformation, artificial intelligence and machine learning tasks.
アルゴリズム:Algorithms

Protected: Nonparametric Bayesian Applications to Factor Analysis and Sparse Modeling

Nonparametric Bayesian models, one of the applications of probabilistic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks, for factor analysis and sparse modeling (infinite latent feature model, beta-Bernoulli distribution model, Indian cuisine buffet process, binary matrix generation process)
アルゴリズム:Algorithms

Protected: Stochastic Generative Models and Gaussian Processes(3) Representation of Probability Distributions

Stochastic generative models utilized in digital transformation, artificial intelligence, and machine learning tasks and representation of probability distributions in samples as a basis for Gaussian processes ,weighted sampling, kernel density estimation, distribution estimation using neural nets
アルゴリズム:Algorithms

Protected: Support Vector Machines for Weak Label Learning (2) Multi-Instance Learning

Extension of support vector machines utilized for digital transformation, artificial intelligence, and machine learning tasks; multi-instance learning approach with SVMs for weak-label learning problems (mi-SVM, MI-SVM)
アルゴリズム:Algorithms

Protected: Computation of graphical models with hidden variables

Parameter learning of graphical models with hidden variables using variational EM algorithm in stochastic generative models (wake-sleep algorithm, MCEM algorithm, stochastic EM algorithm, Gibbs sampling, contrastive divergence method, constrained Boltzmann machine, EM algorithm, KL divergence)
アルゴリズム:Algorithms

Protected: Application of Variational Bayesian Algorithm to Matrix Decomposition Models with Missing Values

Application of variational Bayesian algorithm to matrix factorization models with missing values as a stochastic generative model computation for use in digital transformation, artificial intelligence, and machine learning tasks
アルゴリズム:Algorithms

Protected: Application of Nonparametric Bayesian Structural Change Estimation

Nonparametric Bayesian structural change estimation using Gibbs sampling as an application of probabilistic generative models for digital transformation, artificial intelligence, and machine learning tasks
タイトルとURLをコピーしました