グラフ理論

アルゴリズム:Algorithms

Dream of a realistic SimCity

Integration of simulation and machine learning technologies used for digital transformation, artificial intelligence, and machine learning tasks; application of SimCity to the real world using emulation and machine learning
アルゴリズム:Algorithms

Protected: kernel function

General kernel functions in support vector machines used in digital transformation (DX), artificial intelligence (AI), and machine learning, and kernel functions on probabilistic, string, and graph-type data
アルゴリズム:Algorithms

Protected: Support vector machines for unsupervised learning

Application of support vector machines for digital transformation, artificial intelligence, and machine learning tasks (1-class SVM with nu-SV classification algorithm for unsupervised classification used for anomaly detection)
Stream Data Processing

Protected: Simulation, Data Assimilation, and Emulation

Fusion of extrapolation (deduction) estimation using simulation and interpolation (induction) estimation using machine learning (simulation assimilation and emulation using DNN, etc.) for digital transformation, artificial intelligence and machine learning tasks
IOT技術:IOT Technology

Protected: Differences between hidden Markov models and state-space models and parameter estimation for state-space models

Differences between state-space models, Bayesian models, and hidden Markov models used in digital transformation, artificial intelligence, and machine learning tasks, and parameter estimation for state-space models
アルゴリズム:Algorithms

Protected: Structural Regularization Learning with Submodular Optimization (3)Formulation of the structural regularization problem with submodular optimization

Application of submodular function optimization, an optimization method for discrete information, to structural regularization problems and formulations using submodular optimization (linear approximation and steepest effect methods, accelerated proximity gradient method, FISTA, parametric submodular minimization, and splitting algorithms)
アルゴリズム:Algorithms

Protected: Structural regularization learning using submodular optimization (2) Structural sparsity obtained from submodular functions

Structural regularization learning (coupled Lasso and Lovász extensions) by structural sparsity obtained from submodular functions in submodular optimization, an optimization method for discrete information used in digital transformation, artificial intelligence, and machine learning tasks.
Symbolic Logic

Knowledge Graphs and Big Data Processing

Machine Learning Technology  Artificial Intelligence Technology  Natural Language Processing Technology  Semantic Web Te...
IOT技術:IOT Technology

Protected: Structural regularization learning with submodular optimization (1) Regularization and p-norm review

Review of sparse modeling, regularization and p-norm to consider structural regularization learning with submodular optimization, an optimization technique for discrete information for digital transformation, artificial intelligence and machine learning tasks
IOT技術:IOT Technology

Protected: Maximum Flow and Graph Cut (4) Graphically Representable Submodular Functions

Maximum flow algorithms and pre-flow push methods in graphically representable submodular functions for submodular optimization, an optimization approach for discrete information utilized in digital transformation, artificial intelligence, and machine learning tasks
タイトルとURLをコピーしました