強化学習

アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning Policy Gradient, which implements a strategy with a function with parameters.

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Policy Gradient to implement strategies with parameterized functions (discounted present value, strategy update, tensorflow, and Keras, CartPole, ACER, Actor Critoc with Experience Replay, Off-Policy Actor Critic, behavior policy, Deterministic Policy Gradient, DPG, DDPG, and Experience Replay, Bellman Equation, policy gradient method, action history)
アルゴリズム:Algorithms

Protected: Exp3.P measures and lower bounds for the adversarial multi-armed bandit problem Theoretical overview

Theoretical overview of Exp3.P measures and lower bounds for adversarial multi-arm bandit problems utilized in digital transformation, artificial intelligence, and machine learning tasks cumulative reward, Poly INF measures, algorithms, Arbel-Ruffini theorem, pseudo-riglet upper bounds for Poly INF measures, closed-form expressions, continuous differentiable functions, Audibert, Bubeck, INF measures, pseudo-riglet upper bounds for INF measures, random choice algorithms, optimal order measures, highly probable riglet upper bounds) closed form, continuous differentiable functions, Audibert, Bubeck, INF measures, pseudo-riglet lower bounds, random choice algorithms, measures of optimal order, highly probable riglet upper bounds
アルゴリズム:Algorithms

Theory and algorithms of various reinforcement learning techniques and their implementation in python

Theory and algorithms of various reinforcement learning techniques used for digital transformation, artificial intelligence, and machine learning tasks and their implementation in python reinforcement learning,online learning,online prediction,deep learning,python,algorithm,theory,implementation
python

Protected: Applying Neural Networks to Reinforcement Learning Deep Q-Network Applying Deep Learning to Value Assessment

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Deep Q-Network Prioritized Replay, Multi-step applying deep learning to value assessment Deep Q-Network applying deep learning to value assessment (Prioritized Replay, Multi-step Learning, Distibutional RL, Noisy Nets, Double DQN, Dueling Network, Rainbow, GPU, Epsilon-Greedy method, Optimizer, Reward Clipping, Fixed Target Q-Network, Experience Replay, Average Experience Replay, Mean Square Error, Mean Squared Error, TD Error, PyGame Learning Enviroment, PLE, OpenAI Gym, CNN
アルゴリズム:Algorithms

Protected: Hedge Algorithm and Exp3 Measures in the Adversary Bandid Problem

Hedge algorithm and Exp3 measures in adversarial bandit problems utilized in digital transformation, artificial intelligence, and machine learning tasks pseudo-regret upper bound, expected cumulative reward, optimal parameters, expected regret, multi-armed bandit problem, Hedge Algorithm, Expert, Reward version of Hedge algorithm, Boosting, Freund, Chabile, Pseudo-Code, Online Learning, PAC Learning, Question Learning
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning Value Function Approximation, which implements value evaluation as a function with parameters.

Application of Neural Networks to Reinforcement Learning used for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Examples of implementing value evaluation with functions with parameters (CartPole, Q-table, TD error, parameter update, Q-Learning, MLPRegressor, Python)
アルゴリズム:Algorithms

Protected: Regret Analysis for Stochastic Banded Problems

Regret analysis for stochastic banded problems utilized in digital transformation, artificial intelligence, and machine learning tasks (sum of equal sequences, gamma function, Thompson extraction, beta distribution, hem probability, Mills ratio, partial integration, posterior sample, conjugate prior distribution, Bernoulli distribution, cumulative distribution function, expected value, DMED measure, UCB measure, Chernoff-Hefding inequality, likelihood, upper bound, lower bound, UCB score, arms)
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning (2) Basic Framework Implementation

Implementation of a basic framework for reinforcement learning with neural networks utilized for digital transformation, artificial intelligence and machine learning tasks (TensorBoard, Image tab, graphical, real-time, progress check, wrapper for env. Observer, Trainer, Logger, Agent, Experience Replay, episode, action probability, policy, Epsilon-Greedy method, python)
アルゴリズム:Algorithms

Protected: Measures for Stochastic Bandid Problems Stochastic Matching Method and Thompson Extraction

Stochastic bandit problem measures utilized in digital transformation, artificial intelligence, and machine learning tasks Stochastic matching methods and Thompson extraction worst-case riglet minimization, problem-dependent riglet minimization, worst-case riglet upper bounds, problem-dependent riglet, worst-case riglet, and MOSS measures, sample averages, correction terms, UCB liglet upper bounds, adversarial bandit problems, Thompson extraction, Bernoulli distribution, UCB measures, stochastic matching methods, stochastic bandit, Bayesian statistics, KL-UCCB measures, softmax measures, Chernoff-Heffding inequality
python

Protected: the application of neural networks to reinforcement learning(1) overview

Overview of the application of neural networks to reinforcement learning utilized in digital transformation, artificial intelligence and machine learning tasks (Agent, Epsilon-Greedy method, Trainer, Observer, Logger, Stochastic Gradient Descent, Stochastic Gradient Descent, SGD, Adaptive Moment Estimation, Adam, Optimizer, Error Back Propagation Method, Backpropagation, Gradient, Activation Function Stochastic Gradient Descent, SGD, Adaptive Moment Estimation, Adam, Optimizer, Error Back Propagation, Backpropagation, Gradient, Activation Function, Batch Method, Value Function, Strategy)
タイトルとURLをコピーしました