Protected: Information Geometry of Positive Definite Matrices (2) From Gaussian Graphical Models to Convex Optimization
Information geometry of positive definite matrices utilized in digital transformation, artificial intelligence, and machine learning tasks From Gaussian graphical models to convex optimization (chordal graphs, triangulation graphs, dual coordinates, Pythagorean theorem, information geometry, geodesics, sample variance-covariance matrix, maximum likelihood Estimation, divergence, knot space, Riemannian metric, multivariate Gaussian distribution, Kullback-Leibler information measure, dual connection, Euclidean geometry, narrowly convex functions, free energy)
2022.11.26
アルゴリズム:Algorithmsグラフ理論幾何学:Geometry微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra集合論:Set theory