最適化:Optimization

オンライン学習

Protected: New Developments in Reinforcement Learning (1) – Reinforcement Learning with Risk Indicators

Different approaches (regular process TD learning, RDPS methods) and implementations (Monte Carlo, analytical methods) in risk-aware reinforcement learning methods for digital transformation , artificial intelligence , and machine learning tasks.
オンライン学習

Protected: Partially Observed Markov Decision Processes (2) Planning POMDPs

Reinforcement learning for digital transformation , artificial intelligence , and machine learning tasks; obtaining optimal strategies using partial observation Markov decision process planning methods.
オンライン学習

Protected: Partially Observed Markov Decision Processes (1) On POMDPs and Belief MDPs

Belief MDPs, more flexible reinforcement learning using partially observed Markov decision processes (POMDPs) for digital transformation , artificial intelligence , and machine learning tasks.
オンライン学習

Protected: Reinforcement Learning with Function Approximation (3) – Function Approximation for Policy Functions

This content is password protected. To view it please enter your password below: Password:
オンライン学習

Protected: Reinforcement Learning with Function Approximation (2) – Function Approximation of Value Functions (For Online Learning)

Theory of function approximation online methods gradient TD learning, least-squares based least-squares TD learning (LSTD), GTD2)for reinforcement learning with a huge number of states used in digital transformation , artificial intelligence , and machine learning tasks, and regularization with LASSO.
強化学習

Protected: Reinforcement Learning with Function Approximation (1) – Function Approximation of Value Functions (Batch Learning Case)

Function approximation in the case of batch learning of value functions to deal with a huge number of states in reinforcement learning for digital transformation, artificial intelligence, and machine learning tasks.
IOT技術:IOT Technology

Protected: Model-based reinforcement learning(Sparse sampling, UCT, Monte Carlo search tree)

Model-based reinforcement learning (sparse sampling, UCT, Monte Carlo search trees) used for digital transformation artificial intelligence , and machine learning tasks.
グラフ理論

Structural Learning

  Structural Learning Overview Learning the structure that data has is important for interpreting what the data ...
微分積分:Calculus

Machine Learning Professional Series “Continuous Optimization for Machine Learning” Reading Memo

Summary Continuous optimization in machine learning is a method for solving optimization problems in which varia...
IOT技術:IOT Technology

Protected: Model-free reinforcement learning (2) – Method iteration (Q-learning, SARSA, Actor-click method)

Value iteration methods Q-learning, SARSA, Actor-critic methods to model-free reinforcement learning for digital transformation , artificial intelligence and machine learning tasks.
タイトルとURLをコピーしました