ベイズ推定

アルゴリズム:Algorithms

Protected: Big Data and Bayesian Learning – The Importance of Small Data Learning

Big Data and Bayesian Learning for Digital Transformation (DX), Artificial Intelligence (AI), and Machine Learning (ML) Tasks - Importance of Small Data Learning
アルゴリズム:Algorithms

Protected: Machine Learning with Bayesian Inference – Mixture Models, Data Generation Process and Posterior Distribution

Mixture models and data generation processes and posterior distributions (graphical models, Poisson distribution, Gaussian distribution, Dirichlet distribution, categorical distribution) in machine learning with Bayesian inference used in digital transformation, artificial intelligence, machine learning
アルゴリズム:Algorithms

Protected: Unsupervised Learning with Gaussian Processes (2) Extension of Gaussian Process Latent Variable Model

Extension of Gaussian process latent variable models as unsupervised learning by Gaussian processes, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learningtasks ,infinite warp mixture models, Gaussian process dynamics models, Poisson point processes, log Gaussian Cox processes, latent Gaussian processes, elliptic slice sampling
アルゴリズム:Algorithms

Protected: Unsupervised Learning with Gaussian Processes (1)Overview and Algorithm of Gaussian Process Latent Variable Models

Overview and algorithms of unsupervised learning using Gaussian Process Latent Variable Models GPLVM, an application of probabilistic generative models used in digital transformation, artificial intelligence, and machine learning, Bayesian Gaussian Process Latent Variable Models ,Bayesian GPLVM
グラフ理論

Protected: Information Geometry of Positive Definite Matrices (1) Introduction of dual geometric structure

Introduction of dual geometric structures as information geometry for positive definite matrices utilized in digital transformation, artificial intelligence, and machine learning tasks (Riemannian metric, tangent vector space, semi-positive definite programming problem, self-equilibrium, Levi-Civita connection, Riemannian geometry, geodesics, Euclidean geometry, ∇-geodesics, tangent vector, tensor quantity, dual flatness, positive definite matrix set)
アルゴリズム:Algorithms

Protected: Spatial statistics of Gaussian processes, with application to Bayesian optimization

Spatial statistics of Gaussian processes as an application of stochastic generative models used in digital transformation, artificial intelligence, and machine learning tasks, and tools ARD, Matern kernelsfor Bayesian optimization GPyOpt and GPFlow and GPyTorch
Symbolic Logic

Integration of logic and rules with probability/machine learning

Integration of logic and rules with machine learning (inductive logic programming, statistical relational learning, knowledge-based model building, Bayesian nets, probabilistic logic learning, hidden Markov models) used for digital transformation, artificial intelligence, and machine learning tasks.
アルゴリズム:Algorithms

Protected: Calculation of marginal likelihood, posterior mean, posterior covariance, and predictive distribution using variational Bayesian methods

Methods for computing marginal likelihoods, posterior means, posterior covariances, and predictive distributions in variational Bayesian methods for digital transformation, artificial intelligence , and machine learning tasks James Stein estimator, maximum likelihood estimation, empirical Bayes estimator, Bayesian free energy, hyperparameters, automatic relevance determination, linear regression models, stochastic complexity, log marginal likelihood empirical Bayesian learning, multinomial distribution models, posterior means, linear regression models
アルゴリズム:Algorithms

Protected: Structural learning of graphical models

On learning graph structures from data in Bayesian networks and Markov probability fields (Max-Min Hill Climbing (MMHC), Chow-Liu's algorithm, maximizing the score function, PC (Peter Spirtes and Clark Clymoir) Algorithm, GS (Grow-Shrink) algorithm, SGS (Spietes Glymour and Scheines) algorithm, sparse regularization, independence condition)
アルゴリズム:Algorithms

Protected: Nonparametric Bayes from the viewpoint of point processes – Normalized gamma processes, Dirichlet processes and complete random measures

Nonparametric Bayes from the viewpoint of point processes utilized in digital transformation, artificial intelligence and machine learning tasks - Normalized gamma and Dirichlet processes and complete random measures Poisson processes, Livy measures, gamma random measures, beta random measures, Levy-Ito decomposition
タイトルとURLをコピーしました