機械学習:Machine Learning

微分積分:Calculus

Machine Learning Professional Series: Topic Models Post-Reading Notes

Topic models using probability generation models to extract sentence topics to be used in digital transformation (DX) and artificial intelligence (AI) tasks.
C言語

Protected: MCMC Method for Stochastic Integral Calculations: Multivariate Metropolis Algorithm

MCMC Method for Stochastic Integral Computation for Digital Transformation and Artificial Intelligence Tasks: The Multivariate Metropolis Algorithm
C言語

Protected: A concrete algorithm for Markov chain Monte Carlo: Metropolis method (2) application and efficiency

An Overview of MCMC Efficiency Using Metropolis Method for Stochastic Integral Computation for Digital Trasformation and Artificial Intelligence Tasks
C言語

Protected: A concrete algorithm for Markov chain Monte Carlo: Metropolis method (1)Overview

Overview of the Metropolis method in MCMC methods used for probability integration and other aspects of machine learning for digital transformation and artificial intelligence tasks.
C言語

Protected: General Theory of MCMC Methods: Applying Markov Chains to Monte Carlo Methods

Application of Markov Chains to Monte Carlo methods for efficient computation of probability/combination and other integrals for digital transformation and artificial intelligence tasks.
C言語

Protected: On probability, expectation and Monte Carlo methods

Explanation of the Monte Carlo method, which is the basis of the Markov Chain Monte Carlo (MCMC) method used in integral calculations for machine learning used in digital transformation and artificial intelligence tasks.
python

Protected: Generative Deep Learning with Python and Keras (1) Text generation using LSTM

Text-generating DNN using LSTM with python/keras for digital transformation and artificial intelligence tasks
python

Protected: Advanced deep learning with Python and Keras (3) Model optimization methods

Optimizing networks for deep learning with python/keras for digital transformation and artificial intelligence tasks
python

Protected: Advanced deep learning with Python and Keras (2) Model monitoring using Keras callbacks and TensorBord

Monitoring of networks in deep learning process using pyton/keras for digital transformation and artificial intelligence tasks (monitoring of models using Keras callbacks and TensorBord)
微分積分:Calculus

This is a good introduction to deep learning (Machine Learning Startup Series)Reading Notes

Overview of deep learning for digital transformation and artificial intelligence tasks, including machine learning, gradient descent, regularization, error back propagation, self-encoders, convolutional neural networks, recurrent neural networks, Boltzmann machines, and reinforcement learning.
タイトルとURLをコピーしました