アルゴリズム:Algorithms

アルゴリズム:Algorithms

Protected: Newtonian and Modified Newtonian Methods as Sequential Optimization in Machine Learning

Newton and modified Newton methods (Cholesky decomposition, positive definite matrix, Hesse matrix, Newtonian direction, search direction, Taylor expansion) as continuous machine learning optimization for digital transformation, artificial intelligence and machine learning tasks
アルゴリズム:Algorithms

Protected: What triggers sparsity and for what kinds of problems is sparsity appropriate?

What triggers sparsity and for what kinds of problems is sparsity suitable for sparse learning as it is utilized in digital transformation, artificial intelligence, and machine learning tasks? About alternating direction multiplier method, sparse regularization, main problem, dual problem, dual extended Lagrangian method, DAL method, SPAMS, sparse modeling software, bioinformatics, image denoising, atomic norm, L1 norm, trace norm, number of nonzero elements
アルゴリズム:Algorithms

Overview of meta-heuristics and reference books

  Overviews Meta-heuristics can be algorithms used to solve optimization problems. An optimization problem is on...
アルゴリズム:Algorithms

Protected: Big Data and Bayesian Learning – The Importance of Small Data Learning

Big Data and Bayesian Learning for Digital Transformation (DX), Artificial Intelligence (AI), and Machine Learning (ML) Tasks - Importance of Small Data Learning
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning (2) Basic Framework Implementation

Implementation of a basic framework for reinforcement learning with neural networks utilized for digital transformation, artificial intelligence and machine learning tasks (TensorBoard, Image tab, graphical, real-time, progress check, wrapper for env. Observer, Trainer, Logger, Agent, Experience Replay, episode, action probability, policy, Epsilon-Greedy method, python)
Clojure

Protected: Statistical analysis and correlation evaluation using Clojure/Incanter

Statistical analysis and correlation evaluation using Clojure for digital transformation, artificial intelligence, and machine learning tasks cumulative probability, confidence interval, standard deviation, population, 95% confidence interval, two-tailed test, z-transform, Fisher z-transform, cumulative distribution function, t-distribution, one-tailed test, and degrees of freedom, sampling error, null hypothesis, alternative hypothesis, hypothesis test, standard score, Pearson's product ratio correlation coefficient, covariance, jittering, lognormal distribution, Beki power, Gibrat's law, histogram
アルゴリズム:Algorithms

Protected: Online-type stochastic optimization for machine learning with AdaGrad and minimax optimization

Online stochastic optimization and AdaGrad for machine learning utilized in digital transformation, artificial intelligence, and machine learning tasks, minimax optimization sparsity patterns, training errors, batch stochastic optimization, online stochastic optimization, batch gradient method, minimax optimality, generalization error, Lipschitz continuity, strong convexity, minimax optimal error, minimax error evaluation, first-order stochastic oracle, stochastic dual averaging method, stochastic gradient descent method, regular terms, Nemirovsky, Yudin, convex optimization method, expected error bound, riglets, semidefinite matrix, mirror image descent method, soft threshold functions
アルゴリズム:Algorithms

Geometric approach to data

Geometric approaches to data utilized in digital transformation, artificial intelligence, and machine learning tasks (physics, quantum information, online prediction, Bregman divergence, Fisher information matrix, Bethe free energy function, the Gaussian graphical models, semi-positive definite programming problems, positive definite symmetric matrices, probability distributions, dual problems, topological, soft geometry, topology, quantum information geometry, Wasserstein geometry, Lupiner geometry, statistical geometry)
アルゴリズム:Algorithms

Topological handling of data using topological data analysis

Topological handling of data using topological data analysis utilized for digital transformation, artificial intelligence, and machine learning tasks application to character recognition, application to clustering, R, TDA, barcode plots, persistent plots , python, scikit-tda, Death - Birth, analysis of noisy data, alpha complex, vitris-lips complex, check complex, topological data analysis, protein analysis, sensor data analysis, natural language processing, soft geometry, hard geometry, information geometry, Euclidean Spaces
アルゴリズム:Algorithms

Protected: Measures for Stochastic Bandid Problems Stochastic Matching Method and Thompson Extraction

Stochastic bandit problem measures utilized in digital transformation, artificial intelligence, and machine learning tasks Stochastic matching methods and Thompson extraction worst-case riglet minimization, problem-dependent riglet minimization, worst-case riglet upper bounds, problem-dependent riglet, worst-case riglet, and MOSS measures, sample averages, correction terms, UCB liglet upper bounds, adversarial bandit problems, Thompson extraction, Bernoulli distribution, UCB measures, stochastic matching methods, stochastic bandit, Bayesian statistics, KL-UCCB measures, softmax measures, Chernoff-Heffding inequality
タイトルとURLをコピーしました