深層学習:Deep Learning

アルゴリズム:Algorithms

Theory and algorithms of various reinforcement learning techniques and their implementation in python

Theory and algorithms of various reinforcement learning techniques used for digital transformation, artificial intelligence, and machine learning tasks and their implementation in python reinforcement learning,online learning,online prediction,deep learning,python,algorithm,theory,implementation
python

Protected: Applying Neural Networks to Reinforcement Learning Deep Q-Network Applying Deep Learning to Value Assessment

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Deep Q-Network Prioritized Replay, Multi-step applying deep learning to value assessment Deep Q-Network applying deep learning to value assessment (Prioritized Replay, Multi-step Learning, Distibutional RL, Noisy Nets, Double DQN, Dueling Network, Rainbow, GPU, Epsilon-Greedy method, Optimizer, Reward Clipping, Fixed Target Q-Network, Experience Replay, Average Experience Replay, Mean Square Error, Mean Squared Error, TD Error, PyGame Learning Enviroment, PLE, OpenAI Gym, CNN
アルゴリズム:Algorithms

Protected: Gauss-Newton and natural gradient methods as continuous optimization for machine learning

Gauss-Newton and natural gradient methods as continuous machine learning optimization for digital transformation, artificial intelligence, and machine learning tasks Sherman-Morrison formula, one rank update, Fisher information matrix, regularity condition, estimation error, online learning, natural gradient method, Newton method, search direction, steepest descent method, statistical asymptotic theory, parameter space, geometric structure, Hesse matrix, positive definiteness, Hellinger distance, Schwarz inequality, Euclidean distance, statistics, Levenberg-Merkert method, Gauss-Newton method, Wolf condition
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning Value Function Approximation, which implements value evaluation as a function with parameters.

Application of Neural Networks to Reinforcement Learning used for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Examples of implementing value evaluation with functions with parameters (CartPole, Q-table, TD error, parameter update, Q-Learning, MLPRegressor, Python)
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning (2) Basic Framework Implementation

Implementation of a basic framework for reinforcement learning with neural networks utilized for digital transformation, artificial intelligence and machine learning tasks (TensorBoard, Image tab, graphical, real-time, progress check, wrapper for env. Observer, Trainer, Logger, Agent, Experience Replay, episode, action probability, policy, Epsilon-Greedy method, python)
python

Protected: the application of neural networks to reinforcement learning(1) overview

Overview of the application of neural networks to reinforcement learning utilized in digital transformation, artificial intelligence and machine learning tasks (Agent, Epsilon-Greedy method, Trainer, Observer, Logger, Stochastic Gradient Descent, Stochastic Gradient Descent, SGD, Adaptive Moment Estimation, Adam, Optimizer, Error Back Propagation Method, Backpropagation, Gradient, Activation Function Stochastic Gradient Descent, SGD, Adaptive Moment Estimation, Adam, Optimizer, Error Back Propagation, Backpropagation, Gradient, Activation Function, Batch Method, Value Function, Strategy)
アルゴリズム:Algorithms

Protected: Unsupervised Learning with Gaussian Processes (2) Extension of Gaussian Process Latent Variable Model

Extension of Gaussian process latent variable models as unsupervised learning by Gaussian processes, an application of stochastic generative models utilized in digital transformation, artificial intelligence, and machine learningtasks ,infinite warp mixture models, Gaussian process dynamics models, Poisson point processes, log Gaussian Cox processes, latent Gaussian processes, elliptic slice sampling
アルゴリズム:Algorithms

Implementation of Neural Networks and Error Back Propagation using Clojure

Implementation of neural nets and error back propagation using Clojure for digital transformation (DX), artificial intelligence (AI), and machine learning (ML) tasks
Clojure

Hierarchical Temporal Memory and Clojure

Deep learning with hierarchical temporal memory and sparse distributed representation with Clojure for digital transformation (DX), artificial intelligence (AI), and machine learning (ML) tasks
Symbolic Logic

Integration of logic and rules with probability/machine learning

Integration of logic and rules with machine learning (inductive logic programming, statistical relational learning, knowledge-based model building, Bayesian nets, probabilistic logic learning, hidden Markov models) used for digital transformation, artificial intelligence, and machine learning tasks.
タイトルとURLをコピーしました