微分積分:Calculus Machine Learning Professional Series “Continuous Optimization for Machine Learning” Reading Memo Summary Continuous optimization in machine learning is a method for solving optimization problems in which varia... 2022.01.22 微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics線形代数:Linear Algebra
IOT技術:IOT Technology Protected: Model-free reinforcement learning (2) – Method iteration (Q-learning, SARSA, Actor-click method) Value iteration methods Q-learning, SARSA, Actor-critic methods to model-free reinforcement learning for digital transformation , artificial intelligence and machine learning tasks. 2022.01.21 IOT技術:IOT TechnologyStream Data Processingオンライン学習強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
オンライン学習 Protected: Trade-off between exploration and utilization -Regret and stochastic optimal measures, heuristics Reinforcement learning with regrets, stochastic optimal measures, and heuristics 2022.01.19 オンライン学習強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
IOT技術:IOT Technology Time series data analysis Overview of Time Series Data Learning Time-series data is called data whose values change over time, suc... 2022.01.18 IOT技術:IOT TechnologyStream Data Processing時系列データ解析最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
オンライン学習 Protected: Planning Problems (2) Implementation of Dynamic Programming (Value Iterative Method and Measure Iterative Method) Implementation of Dynamic Programming (Value Iteration and Policy Iteration) for Planning Problems as Reinforcement Learning for Digital Transformation , Artificial Intelligence and Machine Learning Tasks 2022.01.18 オンライン学習強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
推論技術:inference Technology Statistical Causal Inference and Causal Search Statistical Causal Inference and Causal Search When using machine learning, it is important to consider the diffe... 2022.01.17 推論技術:inference Technology機械学習:Machine Learning確率・統計:Probability and Statistics
強化学習 Protected: Planning Problems(1) – Approaches Using Dynamic Programming and Theoretical Underpinnings Reinforcement learning by planning problems (dynamic programming and linear programming) for sequential decision problems in known environments used for digital transformation , artificial intelligence and machine learning tasks. 2022.01.17 強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
最適化:Optimization Machine Learning Professional Series Sparsity-Based Machine Learning Reading Notes Overview of sparse modeling used for regularization and other applications in machine learning for digital transformation , artificial intelligence , and machine learning tasks. 2022.01.15 最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning
オンライン学習 Protected: Evaluating the performance of online learning(Perceptron, Regret Analysis, FTL, RFTL) Perceptron and Riglet Analysis (FTL, RFTL) for evaluating online learning used for digital transformation , artificial intelligence , and machine learning tasks. 2022.01.14 オンライン学習強化学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning確率・統計:Probability and Statistics
オンライン学習 Protected: Advanced online learning (4) Application to deep learning (AdaGrad, RMSprop, ADADELTA, vSGD) Application to online learning in AdaGrad, RMSprop, and vSGD used for digital transformation , artificial intelligence , and machine learning tasks. 2022.01.13 オンライン学習微分積分:Calculus最適化:Optimization機械学習:Machine Learning深層学習:Deep Learning確率・統計:Probability and Statistics