ML

アルゴリズム:Algorithms

Protected: An example of machine learning by Bayesian inference: inference by Gibbs sampling of a Poisson mixture model

Examples of machine learning with Bayesian inference utilized for digital transformation, artificial intelligence, and machine learning tasks: inference by Gibbs sampling of Poisson mixed models (algorithm, sampling of unobserved variables, Dirichlet distribution, gamma distribution, conditional distribution, categorical distribution, posterior distribution, simultaneous distribution, superparameter, knowledge model, latent variable) categorical distribution, posterior distribution, simultaneous distribution, hyperparameters, knowledge models, data generating processes, latent variables)
アルゴリズム:Algorithms

Protected: Hedge Algorithm and Exp3 Measures in the Adversary Bandid Problem

Hedge algorithm and Exp3 measures in adversarial bandit problems utilized in digital transformation, artificial intelligence, and machine learning tasks pseudo-regret upper bound, expected cumulative reward, optimal parameters, expected regret, multi-armed bandit problem, Hedge Algorithm, Expert, Reward version of Hedge algorithm, Boosting, Freund, Chabile, Pseudo-Code, Online Learning, PAC Learning, Question Learning
アルゴリズム:Algorithms

Protected: Representation Theorems and Rademacher Complexity as the Basis for Kernel Methods in Statistical Mathematics Theory

Representation theorems and Rademacher complexity as a basis for kernel methods in statistical mathematics theory used in digital transformation, artificial intelligence, and machine learning tasks Gram matrices, hypothesis sets, discriminant bounds, overfitting, margin loss, discriminant functions, predictive semidefiniteness, universal kernels, the reproducing kernel Hilbert space, prediction discriminant error, L1 norm, Gaussian kernel, exponential kernel, binomial kernel, compact sets, empirical Rademacher complexity, Rademacher complexity, representation theorem
アルゴリズム:Algorithms

Protected: Gauss-Newton and natural gradient methods as continuous optimization for machine learning

Gauss-Newton and natural gradient methods as continuous machine learning optimization for digital transformation, artificial intelligence, and machine learning tasks Sherman-Morrison formula, one rank update, Fisher information matrix, regularity condition, estimation error, online learning, natural gradient method, Newton method, search direction, steepest descent method, statistical asymptotic theory, parameter space, geometric structure, Hesse matrix, positive definiteness, Hellinger distance, Schwarz inequality, Euclidean distance, statistics, Levenberg-Merkert method, Gauss-Newton method, Wolf condition
アルゴリズム:Algorithms

Protected: Approximate computation of various models in machine learning by Bayesian inference

Approximate computation of various models in machine learning using Bayesian inference for digital transformation, artificial intelligence, and machine learning tasks (structured variational inference, variational inference algorithms, mixture models, conjugate prior, KL divergence, ELBO, evidence lower bound, collapsed Gibbs sampling, blocking Gibbs sampling, approximate inference)
コンピューター

Various approaches to realize optical computers

Various approaches to realize optical computers to exploit digital transformation, artificial intelligence, and machine learning tasks (fractals, ultra-high definition spatial light modulators, stereoscopic images, self-reproducing software, self-reproducing hardware, Spatial Light Modulator, SLM, Spatial Modulator, Colloidal diamond, Plastic, Photonic crystal, Diamond, 5D data storage, Nanostructure, Superman Memory Crystal, Superman, Fortress of Solitude)
アルゴリズム:Algorithms

Protected: Application of Neural Networks to Reinforcement Learning Value Function Approximation, which implements value evaluation as a function with parameters.

Application of Neural Networks to Reinforcement Learning used for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Examples of implementing value evaluation with functions with parameters (CartPole, Q-table, TD error, parameter update, Q-Learning, MLPRegressor, Python)
Clojure

Protected: Network Analysis Using Clojure (2)Computing Triangles in a Graph Using Glittering

Network analysis using triangle computation in graphs using Clojure/Glittering for digital transformation, artificial intelligence, and machine learning tasks (GraphX, Pregel API, Twitter dataset, custom triangle count algorithm, message send function, message merge function, outer join, RDD, vertex attributes, Apache Spark, Sparkling, MLlib, Glittering, triangle counting, edge-cut strategy, random-vertex-cut strategy, and social networks, graph parallel computing functions, Hadoop, data parallel systems, RDG, Resilient Distributed Graph, Hama, Giraph)
web技術:web technology

Protected: Setup of Terraform, an infrastructure management tool

Setup of Terraform, an infrastructure management tool used for digital transformation, artificial intelligence, and machine learning tasks (git-secrets, dockernized Terraform, AWS credentials, team development tfenv, Homebrew, AWS CLI, AWS Management Console, access key ID, secret access key, python, Identity and Access Management, AWS, environment setup)
アーキテクチャ

AWS Cloud Service Design Patterns (1)

AWS Cloud Service Design Patterns for Digital Transformation, Artificial Intelligence, and Machine Learning tasks (Snapshot, Stamp, Scale Up, Scale Out, Ondemand Disk, Multi-Server, Multi-Datacenter, Floating IP, Deep Health Check, Routing-Based HA, Clone Server, NFS Sharing, NFS Replica, State Sharing, URL Rewriting, Rewrite Proxy, and Datacenter). Datacenter, Floating IP, Deep Health Check, Routing-Based HA, Clone Server, NFS Sharing, NFS Replica, State Sharing, URL Rewriting, Rewrite Proxy, Cache Proxy, Scheduled Scale Cache Proxy, Scheduled Scale Out, IP Pooling, Web Storage, Direct Hosting, Private Distribution, Cache Distribution, Rename Distribution, Private Cache Distribution, Latency Based Origin)
タイトルとURLをコピーしました