python

IOT技術:IOT Technology

Protected: Leveraging Apache Spark for Distributed Data Processing – Developing and Executing Applications

Leveraging Apache Spark to enable distributed data processing for digital transformation, artificial intelligence, and machine learning tasks -Application development and execution (forced termination, yarn-client mode, yarn-cluster mode, YARN, and YARN) management commands, cluster, python, Clojure, Shell, AWS, Glue, sparkplug, spark-shell, spark-submit, Nodemanager, HDFS, Spark applications, Scala, sbt, plugin.sbt, build.sbt build.sbt, build, sbt-assembly plugin, JAR file)
アルゴリズム:Algorithms

Topological handling of data using topological data analysis

Topological handling of data using topological data analysis utilized for digital transformation, artificial intelligence, and machine learning tasks application to character recognition, application to clustering, R, TDA, barcode plots, persistent plots , python, scikit-tda, Death - Birth, analysis of noisy data, alpha complex, vitris-lips complex, check complex, topological data analysis, protein analysis, sensor data analysis, natural language processing, soft geometry, hard geometry, information geometry, Euclidean Spaces
python

Protected: Implementation of Model-Free Reinforcement Learning in python (3)Using experience for value assessment or strategy update: Value-based vs. policy-based

Value-based and policy-based implementations of model-free reinforcement learning in python for digital transformation, artificial intelligence, and machine learning tasks
アルゴリズム:Algorithms

Protected: Implementation of model-free reinforcement learning in python (2) Monte Carlo and TD methods

Python implementations of model-free reinforcement learning such as Monte Carlo and TD methods Q-Learning, Value-based methods, Monte Carlo methods, neural nets, Epsilon-Greedy methods, TD(lambda) methods, Muli-step Learning, Rainbow, A3C/A2C, DDPG, APE-X DDPG, Muli-step Learning) Epsilon-Greedy method, TD(λ) method, Muli-step Learning, Rainbow, A3C/A2C, DDPG, APE-X DQN
アルゴリズム:Algorithms

Protected: Implementation of model-free reinforcement learning in python (1) epsilon-greedy method

Implementation in python of the epsilon-Greedy method, a model-free reinforcement learning method for use in digital transformation, artificial intelligence, and machine learning tasks, multi-armed bandit
python

Protected: Overview of model-based approach to reinforcement learning and its implementation in python

Overview of reinforcement learning with model-based approaches used for digital transformation, artificial intelligence, and machine learning tasks and its implementation in python Bellman Equation, Value Iteration, Policy Iteration
アルゴリズム:Algorithms

Protected: Overviews of reinforcement learning and implementation of a simple MDP model

Overview of reinforcement learning used for digital transformation (DX), artificial intelligence (AI), and machine learning (ML) tasks and implementation of a simple MDP model in python
Clojure

Clojure and Python integration and machine learning

Implementation of a library (libpython-clj) and sample code (transformers, lime, autoencoder, etc.) for integration with Clojure for Python modules used for digital transformation, artificial intelligence and machine learning tasks
python

GPy – A Python-based framework for Gaussian processes

GPy Gaussian regression problem, auxiliary variable method, sparse Gaussian regression, Bayesian GPLVM, latent variable model with Gaussian processes, a Python-based implementation of Gaussian processes, an application of stochastic generative models used in digital transformation, artificial intelligence and machine learning tasks.
python

Python development environment in SublimeText4

Launch of Python development environment in SublimeText4 and VS code for digital transformation (DX), artificial intelligence (AI) and machine learning (ML) tasks
タイトルとURLをコピーしました