DX

機械学習:Machine Learning

Machine Learning Prootional Series – Support Vector Machines Reading Notes

Reading notes for a reference book on support vector machines (SVMs), a supervised learning pattern recognition model used for classification and regression in digital transformation, artificial intelligence, and machine learning tasks.
微分積分:Calculus

Protected: Anomaly Detection in Directional Data – Analysis Using Von Mises Fisher Distribution and Chi-Square

Explanation of a method that uses the von Mises Fisher distribution from directional data in anomaly detection technology used in digital transformation and artificial intelligence tasks.
推論技術:inference Technology

Protected: Anomaly detection using support vector data description method-Biangulation problems and Lagrangian functions and data cleansing

Anomaly Detection and Data Cleansing Using Support Vector Description Method with Kernel Tricks for Digital Transformation and Artificial Intelligence Tasks
微分積分:Calculus

Anomaly and Change Detection Technologies

An overview of various machine learning techniques for anomaly and change detection used in digital transformation and artificial intelligence tasks
推論技術:inference Technology

Protected: Anomaly detection using the nearest neighbor method-Dealing with multimodal distributions and the Riemannian metric

Anomaly and change detection by the nearest neighbor method using Riemannian measurement to deal with multimodal data for digital transformation and artificial intelligence tasks.
異常検知・変化検知

Protected: Anomaly detection using simple Bayesian method -Differences from binary classification

Overview of Simple Bayesian Methods for Multivariate Anomaly/Change Detection for Digital Transformation and Artificial Intelligence Tasks
最適化:Optimization

Protected: Anomaly detection by T2 method for hoteling-Mahalanobis distance and chi-square distribution

Anomaly and change detection using the T2 method (Mahalanobis distance) of hoteling used in digital transformation and artificial intelligence tasks.
最適化:Optimization

Protected: Basic concept of anomaly and change detection – Neyman-Pearson Decision Rule

An Introduction to Machine Learning for Anomaly and Change Detection Used in Digital Transformation and Artificial Intelligence Tasks
地理空間情報処理

Machine Learning Professional Series – Relational Data Learning Post-Reading Notes

Overview of relational data learning to extract the meaning and knowledge behind information used in digital transformation , artificial intelligence , and machine learning tasks.
C言語

Protected: Applications of Markov chain Monte Carlo methods (Bayesian inference)

Overview of the application of MCMC methods to Bayesian inference for digital transformation , artificial intelligence , and machine learning tasks, and description of various algorithms
タイトルとURLをコピーしました