A2C

アルゴリズム:Algorithms

Protected: TRPO/PPO and DPG/DDPG, an improvement of the Policy Gradient method of reinforcement learning

TRPO/PPO and DPG/DDPG (Pendulum, Actor Critic, SequentialMemory, SequentialMemory, and SequentialMemory), which are improvements of Policy Gradient methods of reinforcement learning used for digital transformation, artificial intelligence, and machine learning tasks. Adam, keras-rl, TD error, Deep Deterministic Policy Gradient, Deterministic Policy Gradient, Advanced Actor Critic, A2C, A3C, Proximal Policy Optimization, Trust Region Policy Optimization, Python)
アルゴリズム:Algorithms

Protected: Applying Neural Networks to Reinforcement Learning Applying Deep Learning to Strategy:Advanced Actor Critic (A2C)

Application of Neural Networks to Reinforcement Learning for Digital Transformation, Artificial Intelligence, and Machine Learning tasks Implementation of Advanced Actor Critic (A2C) applying deep learning to strategies (Policy Gradient method, Q-learning, Gumbel Max Trix, A3C (Asynchronous Advantage Actor Critic))
タイトルとURLをコピーしました